\(19^{2008}+7^{2008}\) cho 27

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2017

Đặt: \(x^2+10x+21=t\)

Ta có: \(A=\left(\left(x+2\right)\left(x+8\right)\right)\left(\left(x+4\right)\left(x+6\right)\right)+2008\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+2008\)

Thay t vào ta được: \(A=\left(t-5\right)\left(t+3\right)+2008=t^2-2t+15+2008=t^2-2t+2023\)

Vậy A chia t dư 2023

19 tháng 2 2017

\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+2008=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+2008\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)\)

đặt \(x^2+10x+21=a\)

ta có \(\left(a-5\right)\left(a+3\right)=a^2-2a-15+2008=a\left(a-2\right)+1993\)

ta có a(a-2) chia hết cho a hay x^2+10x+21

số dư là 1993

26 tháng 1 2018

Ta có: \(\frac{\left(2007-x\right)^2+\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}{\left(2007-x\right)^2-\left(2007-x\right)\left(2008-x\right)+\left(x-2008\right)^2}\)

\(=\frac{\left(2007-x\right)^2+\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}{\left(2007-x\right)^2+\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}\)

\(=1\)

30 tháng 10 2016

719 + 720 + 721 = 719.(1 + 7 + 72) = 719.57 chia 57 dư 0

11 tháng 10 2016

Ta có:

\(7^{19}+7^{20}+7^{21}=7^{19}.\left(1+7+7^2\right)=7^{19}.57⋮57\)

\(\Rightarrow7^{19}+7^{20}+7^{21}⋮51\)

Vậy số dư khi chia \(7^{19}+7^{20}+7^{21}\) cho 57 là 0