K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2019

Ta có: \(\left(x+3\right)\left(x+5\right)\left(x+7\right)\left(x+9\right)+2033\)

\(=\left[\left(x+3\right)\left(x+9\right)\right]\left[\left(x+5\right)\left(x+7\right)\right]+2033\)

\(=\left(x^2+12x+27\right)\left(x^2+12x+35\right)+2033\)

\(=\left(x^2+12x+31-4\right)\left(x^2+12x+31+4\right)+2033\)

\(=\left(x^2+12x+31\right)^2-4^2+2033\)

\(=\left(x^2+12x+31\right)^2+2017\)

\(=\left(x^2+12x+31\right)^2-1^2+2018\)

\(=\left(x^2+12x+31-1\right)\left(x^2+12x+31+1\right)+2018\)

\(=\left(x^2+12x+30\right)\left(x^2+12x+32\right)+2018\)

\(\left(x^2+12x+30\right)⋮\left(x^2+12x+30\right)\)

\(\Rightarrow\left(x^2+12x+30\right)\left(x^2+12x+32\right)⋮\left(x^2+12x+30\right)\)

\(\Rightarrow\left[\left(x^2+12x+30\right)\left(x^2+12x+32\right)+2018\right]:\left(x^2+12x+30\right)\)\(2018\)

\(\Rightarrow\left[\left(x+3\right)\left(x+5\right)\left(x+7\right)\left(x+9\right)+2033\right]:\left(x^2+12x+30\right)\)\(2018\)

Vậy số dư của phép chia\(\left(x+3\right)\left(x+5\right)\left(x+7\right)\left(x+9\right)+2033\)cho \(x^2+12x+30\)\(2018\)

22 tháng 4 2019

Ta có :

(x + 3 ) (x+5)(x+7)(x+9) + 2033

= ( x2 + 12x + 27 ) (x2 + 12x + 35 ) + 2033

đặt x2 + 12x + 30 = a

Khi đó : (a - 3 ) ( a + 5 ) + 2033

= a2 + 2a - 15 + 2033

= a2 + 2a + 2018

Vậy số dư là 2018

11 tháng 8 2018

chả khác j câu này : https://hoc24.vn/hoi-dap/question/228443.html

14 tháng 12 2018

chưa chắc bn ơi

23 tháng 8 2023

Để tìm dư của phép chia đa thức f(x) cho (x^2 + 1)(x - 2), chúng ta cần sử dụng định lý dư của đa thức. Theo định lý dư của đa thức, nếu chia đa thức f(x) cho đa thức g(x) và được dư đa thức r(x), thì ta có: f(x) = q(x) * g(x) + r(x) Trong trường hợp này, chúng ta biết rằng f(x) chia cho x - 2 dư 7 và chia cho x^2 + 1 dư 3x + 5. Vì vậy, chúng ta có các phương trình sau: f(x) = q(x) * (x - 2) + 7 f(x) = p(x) * (x^2 + 1) + (3x + 5) Để tìm dư của phép chia f(x) cho (x^2 + 1)(x - 2), ta cần tìm giá trị của r(x). Để làm điều này, chúng ta cần giải hệ phương trình trên. Đầu tiên, chúng ta sẽ giải phương trình f(x) = q(x) * (x - 2) + 7 để tìm giá trị của q(x). Sau đó, chúng ta sẽ thay giá trị của q(x) vào phương trình f(x) = p(x) * (x^2 + 1) + (3x + 5) để tìm giá trị của p(x) và r(x). Nhưng trước tiên, chúng ta cần biết đa thức f(x) là gì. Bạn có thể cung cấp thông tin về đa thức f(x) không?

15 tháng 10 2022

 

a: \(A=m^6-6m^5+10m^4+m^3+98m-26\)

\(=m^6-m^4+m^3-6m^5+6m^3-6m^2+11m^4-11m^2+11m-6m^3+6m-6+17m^2+81m-20\)

\(=m^3-6m^2+11m-6+\dfrac{17m^2+81m-20}{m^3-m+1}\)

b: \(C=m^3-6m^2+11m-6=\left(m-1\right)\left(m-3\right)\left(m-2\right)\) luôn chia hết cho 6

b: Để đa thức dư bằng 0 thì 17m^2+81m-20=0

=>m=-5 hoặc m=4/17

19 tháng 10 2021

Bài 3:

Ta có: \(2n^2+n-7⋮n-2\)

\(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{3;1;5;-1\right\}\)