Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(^{X^{3N+1-7}}\)
b)\(X^{n-6^{ }}y^{n+3-10}\)
c)\(X^{^{ }5-n}\)
d)\(X^{2N-5}\)
E)\(\frac{3}{2}X^{5-N}Y^{N-3}\)
K NHA
\(S=1^n+2^n+3^n+4^n+5^n+6^n+7^n+8^n\)
\(=\left(2^n+8^n\right)+\left(3^n+7^n\right)+\left(4^n+6^n\right)+1^n+5^n\)
\(=\left(2+8\right)\cdot M+\left(3+7\right)\cdot N+\left(4+6\right)\cdot P+1^n+5^n\)(áp dụng hằng đẳng thức với n lẻ)
\(=10M+10N+10P+1^n+5^n\)
\(=5\left(2M+2N+5^{n-1}\right)+1\) chia 5 dư 1.
Vì n lẻ nên ta có :
S = 1n + 2n + ... + 8n \(\equiv\)1n + 2n - 2n + 0 + 1n + 2n - 2n \(\equiv\)1n \(\equiv\)1 ( mod 8 )
=> S chia 5 dư 1
Vậy S chia 5 dư 1
Vì n lẻ nên ta có:
S = 1^n + 2^n + 3^n + .. + 8^n
= 1^n + 2^n- 2^n- 1^ + 0 + 1^n+ 2^n - 2^n ≡ 1^n ≡ 1 ( mod 8 )
Vậy S chia 5 dư 1.
#Châu's ngốc
Bài 272 , 273 Sách nâng cao và phát triển toán 8 tập 1 trang 71, bài tương tự đấy