K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2020

Vì n lẻ nên ta có :

S = 1n + 2n + ... + 8n \(\equiv\)1n + 2n - 2n + 0 + 1n + 2n - 2n \(\equiv\)1n \(\equiv\)1 ( mod 8 )

=> S chia 5 dư 1

Vậy S chia 5 dư 1 

28 tháng 1 2020

Vì n lẻ nên ta có:

S = 1^n + 2^n + 3^n + .. + 8^n

   = 1^n + 2^n- 2^n- 1^ + 0 + 1^n+ 2^n - 2^n ≡ 1^n ≡ 1 ( mod 8 )

Vậy S chia 5 dư 1.

#Châu's ngốc

9 tháng 4 2022

-Từ số 4! đến số 10! đều chia hết cho 20 do có thừa số 4.5=20.

-Mà \(1!+2!+3!=1+2+6=9\) chia 20 dư 9 nên tổng đó chia 20 dư 9. 

25 tháng 3 2019

\(S=1^n+2^n+3^n+4^n+5^n+6^n+7^n+8^n\)

\(=\left(2^n+8^n\right)+\left(3^n+7^n\right)+\left(4^n+6^n\right)+1^n+5^n\)

\(=\left(2+8\right)\cdot M+\left(3+7\right)\cdot N+\left(4+6\right)\cdot P+1^n+5^n\)(áp dụng hằng đẳng thức với n lẻ)

\(=10M+10N+10P+1^n+5^n\)

\(=5\left(2M+2N+5^{n-1}\right)+1\) chia 5 dư 1.

25 tháng 3 2019

quá đơn dản phải đọc đề đi rồi hãy hỏi

21 tháng 7 2015

Ta có: n2+3n+5=n2+n+2n+5=n.(n+1)+2n+2+3=n.(n+1)+2.(n+1)+3=(n+2).(n+1)+2

Vì (n+2).(n+1) chia hết cho n+1.

=>(n+2).(n+1)+2 : n+1(dư 2)

Vậy n2+3n+5:n+1(dư 2)

25 tháng 6 2016

Bài toán 108 - Học toán với OnlineMath

26 tháng 6 2016

125:N

N :6