K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2017

ta có A = 1! + 2! + 3! + ... + 2015!

           = (...0)

24 tháng 8 2018

1.

Đặt \(1995^{1995}=a=a_1+a_2+a_3+...+a_n\)

Gọi \(S=a_1^3+a_2^3+...+a_n^3=a_1^3+a_2^3+...+a_n^3-a+a\)

\(S=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)+a\)

Vì mỗi dấu ngoặc đều chia hết cho 6 do là tích 3 số tự nhiên liên tiếp

\(\Rightarrow S\) chia 6 dư a

\(1995\equiv3\left(mod6\right)\Rightarrow1995^{1995}\equiv3\left(mod6\right)\)

Vậy S chia 6 dư 3

2.

\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}=\left(B\left(25\right)-1\right)^{10}=B\left(25\right)+1\)

Vì 2100 chẵn nên 3 chữ số tận cùng của nó chẵn nên có thể là 126; 376; 626; 876

Lại có 2100 chia hết cho 8 => ba chữ số tận cùng chi hết cho 8

=> Ba CTSC là 376

3.

\(22^{22}+55^{55}=\left(BS7+1\right)^{22}+\left(BS7-1\right)^{55}=BS7+1+BS7-1=BS7⋮7\)

\(3^{1993}=3\cdot\left(3^3\right)^{664}=3\cdot\left(BS7-1\right)^{664}=3\left(BS7+1\right)=BS7+3\) nên chia 7 dư 3

\(1992^{1993}+1994^{1995}=\left(BS7-3\right)^{1993}+\left(BS7-1\right)^{1995}=BS7-3^{1993}+BS7-1=BS7-\left(BS7+3\right)+BS7-1=BS7-4\) chia 7 dư 3

\(3^{2^{1930}}=3^{2860}=3\cdot\left(3^3\right)^{953}=3\cdot\left(BS7-1\right)^{953}=3\left(BS7-1\right)=BS7-3\) chia 7 dư 4

4.

\(2^{1994}=2^2\cdot\left(2^3\right)^{664}=4\left(BS7+1\right)^{664}=4\left(BS7+1\right)=BS7+4\) chia 7 dư 4

\(3^{1998}+5^{1998}=\left(3^3\right)^{666}+\left(5^2\right)^{999}=\left(BS7-1\right)^{666}+\left(BS7-1\right)^{999}=BS7+1+BS7-1=BS7⋮7\)

\(A=1^3+2^3+3^3+...+99^3=\left(1+2+...+99\right)^2=B^2⋮B\)

CM bằng quy nạp (có trên mạng)

2 tháng 10 2020

bạn ơi cho mình hỏi là vì sao 1995 chia 6 dư 3 thì 1995^1995 chia 6 cũng dư 3 vậy ạ? nếu đc thì bạn có thể chứng minh giúp mình t/c này với ạ

28 tháng 7 2023

\(38^{10}=\left(39-1\right)^{10}\)

 Ta đều biết rằng biểu thức này sẽ có dạng \(39P+1\) (nếu muốn viết đầy đủ thì phải dùng khai triển Newton) và vì \(13|39\) nên biểu thức trên cũng có thể được viết dưới dạng \(13Q+1\) (với \(Q=3P\)). Do đó \(38^{10}\) chia 13 dư 1.

 Ta làm tương tự: \(38^9=\left(39-1\right)^9=13R-1\) nên lúc này \(38^9\) chia 13 dư 12.

 

28 tháng 7 2023

mik chx học cái đó :<

16 tháng 9 2016

\(3^{2016}\equiv1^{2016}\)

mà \(1^{2016}\)chia 13 dư 1

nên 3^2016 : 13 dư 1

17 tháng 7 2017

hằng đẳng thức : \(\left(a+b\right)^n=B\left(a\right)+b^n=B\left(b\right)+a^n\)

áp dụng hằng đẳng thức trên ta có 

\(38^{10}=\left(39-1\right)^{10}=B\left(39\right)+\left(-1\right)^{10}=B\left(39\right)+1\)

vì B(39) chia hết cho 13 nên B(39)+1 chia 13 dư 1 
tương tự làm câu còn lại nhé

29 tháng 12 2016

HD

Ghép tạo thừa số (x+1) 

làm đi không làm dduocj mình mới làm chi tiết

29 tháng 12 2016

thay x=-1. ra số dư, áp dụng định lý bê du

=> 38^9+1 chia hết cho 39 => 38^9 + 1 chia hết cho 13
=> 38^9 chia 13 dư 12
Xét 38^10 + 38^9 
=38^9(38+1) chia hết cho 39 => 38^10 chia 13 dư 1 

    23 tháng 4 2016

    giúp mình nha mình đang cần gấp !!! ^^