K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2018

\(\frac{2005}{2005}\)=1 nên 1:11 = 0.0909090909...        

mình đoán vậy

7 tháng 4 2018

+Ta có : 35 ≡ 1 (mod 11) => (35)401 ≡ 1 (mod 11)

Và 45 ≡ 1 (mod 11) => (45)401 ≡ 1 (mod 11)

=> A = 32005 + 42005 ≡ 2 (mod 11)

=> A chia cho 11 dư 2

+Ta có : 33 ≡ 1 (mod 13) => (33)668. 3 ≡ 1.3 (mod 13) => 32005 ≡ 3 (mod 13)

Và 43 ≡ -1 (mod 13) =>(43)668 .4≡ 1.4 (mod 13) => 42005 ≡ 4 (mod 13)

=> A = 32005 + 42005 ≡ 7 (mod 13)

=> A chia cho 13 dư 7 .

17 tháng 8 2018

52005 + 52006 + 52007

= 52005.1 + 52005.5 + 52005.52

= 52005.(1 + 5 + 52)

= 52005.31 ⋮ 31

=> số dư trong phép chia này là 0

17 tháng 8 2018

bạn ơi mk hỏi là 5^2005 + 5^2006 +2007 chứ ko phải 5^2005 + 5^2006 + 5^2007

23 tháng 2 2019

\(1+2005+2005^2+...+2005^{2009}\)(1)

\(=\left(1+2005\right)+\left(2005^2+2005^3\right)+...+\left(2005^{2008}+2005^{2009}\right)\)

\(=2006+2005^2.\left(1+2005\right)+...+2005^{2008}.\left(1+2005\right)\)

\(=2006.\left(2005^0+2005^2+...+2005^{2008}\right)⋮2006\)

\(\left(1\right)=\frac{2005^{2010}-1}{2004}\Rightarrow2005^{2010}:2006\text{ dư 1}\)(bn tự tính)

28 tháng 12 2018

minh khong heu minh moi co lop10 thoi

20 tháng 2 2018

GIÚP MIK với

7 tháng 7 2019

n là số tự nhiên nên n có 3 dạng : \(3k+1;3h+2;3l\left(k;h;l\in N\right)\)

\(2005\equiv1\left(mod3\right)\Rightarrow2005^n\equiv1\left(mod3\right)\)=> \(2005^n\)luôn chia 3 dư 1 với mọi số tự nhiên n

+>\(n=3k:n^{2005}⋮3;2005.n⋮3\Rightarrow2005^n+n^{2005}+2005.n⋮3\)dư 1 ( loại )

+>\(n=3k+1:n\equiv1\left(mod3\right)\Leftrightarrow n^{2005}\equiv1\left(mod3\right);2005\equiv1\left(mod3\right)\Leftrightarrow2005.n\equiv1.1=1\left(mod3\right)\)

\(\Rightarrow2005^n+n^{2005}+2005.n\equiv1+1+1=3\left(mod3\right);3⋮3\Rightarrow A⋮3\)( hợp lý -> chọn )

+>\(n=3k+2\Rightarrow n\equiv-1\left(mod3\right)\Leftrightarrow n^{2005}\equiv-1\left(mod3\right);2005\equiv1\left(mod3\right)\Rightarrow2005.n\equiv1.-1=-1\left(mod3\right)\)

\(\Rightarrow2005^n+n^{2005}+2005.n\equiv1+\left(-1\right)+\left(-1\right)=-1\left(mod3\right)\Leftrightarrow A⋮̸3\)( loại )

Vậy n là tất cả các số tự nhiên chia 3 dư 1.

Đỗ Đức Lợi làm thiếu rồi :))

\(A=2005^n+n^{2005}+2005.n⋮3\)

Ta có \(2005\)ko chia hết 3 vì 2005 chia 3 dư 1

=>2005n=3k+1(k\(\in N\))

Xét +) n=3k ta có A =2005n+n2005.n

A=(3k+1+3k+3k):3 dư 1 

=> loại n=3k

+)n=3k+1 ta có A=3k+1+3k+1+3k+1

A=9k+3

A=3(k+1) \(⋮\)3

+)n=3 k+2 Ta có :

A=3k+1+3k+2+3k+2

A=9k +5 :3 dư 2

=>n=3k+2 ( loại )

Với n=3k+1 thì A=3(k+1) chia hết cho 3

3 tháng 10 2016

Gọ số cần tìm là a . Theo đề ra ta có :

\(\begin{cases}a=2005k+23\\a=200ll+32\end{cases}\)(  \(k;l\in N;\left(k;l\right)=1\) ; k ; l bé nhất )

\(\Rightarrow2005k+23=2007l+32\)

\(\Rightarrow2005k-9=2007l\)

\(\Rightarrow\frac{2005k-9}{2007}=l\)

Vi l là số tự nhiên

\(\Rightarrow2005k-9⋮2007\)

\(\Rightarrow2005k-9\in B_{2007}\)

\(\Rightarrow2005k-9\in B_{2007}\)

Đến dây bạn tự giải tiếp nhé .

3 tháng 10 2016

cảm ơn nhé!

7 tháng 4 2018

Ta có : 1944 ≡ -2 (mod 7) => 19442005 ≡ (-2)2005 (mod 7)

Mà (-2)3 ≡ - 1 (mod 7) => (-23)668 ≡ 1668 (mod 7) hay (-23)668 ≡ 1 (mod 7)

=> (-23)668.(-2) ≡ - 2 (mod 7) hay (-2)2005 ≡ - 2 (mod 7)

Vậy 19442005 cho 7 dư 5.