Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A-B
A = 50+52+54+...52022
52xA=52+54+...52024
24xA = 52024-1
A=\(\dfrac{5^{2024}-1}{24}\)
B = 51+53+...52023
B =5x(50+52+...52022) = 5xA
M = A-B = A-5xA = -4A
M=\(\dfrac{1-5^{2024}}{6}\)
Vậy 24xA - 1 = 52024
Nên 52024 chia cho 3 dư 2
a) \(A=2+2^2+...+2^{2024}\)
\(2A=2^2+2^3+...+2^{2025}\)
\(2A-A=2^2+2^3+...+2^{2025}-2-2^2-...-2^{2024}\)
\(A=2^{2025}-2\)
b) \(2A+4=2n\)
\(\Rightarrow2\cdot\left(2^{2025}-2\right)+4=2n\)
\(\Rightarrow2^{2026}-4+4=2n\)
\(\Rightarrow2n=2^{2026}\)
\(\Rightarrow n=2^{2026}:2\)
\(\Rightarrow n=2^{2025}\)
c) \(A=2+2^2+2^3+...+2^{2024}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2023}+2^{2024}\right)\)
\(A=2\cdot3+2^3\cdot3+...+2^{2023}\cdot3\)
\(A=3\cdot\left(2+2^3+...+2^{2023}\right)\)
d) \(A=2+2^2+2^3+...+2^{2024}\)
\(A=2+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2022}+2^{2023}+2^{2024}\right)\)
\(A=2+2^2\cdot7+2^5\cdot7+...+2^{2022}\cdot7\)
\(A=2+7\cdot\left(2^2+2^5+...+2^{2022}\right)\)
Mà: \(7\cdot\left(2^2+2^5+...+2^{2022}\right)\) ⋮ 7
⇒ A : 7 dư 2
\(C=\dfrac{2^{2024}-3}{2^{2023}-1}=\dfrac{2.2^{2023}-2-1}{2^{2023}-1}=\dfrac{2\left(2^{2023}-1\right)-1}{2^{2023}-1}=2-\dfrac{1}{2^{2023}-1}\)
\(D=\dfrac{2^{2023}-3}{2^{2022}-1}=\dfrac{2.2^{2022}-2-1}{2^{2022}-1}=\dfrac{2\left(2^{2022}-1\right)-1}{2^{2022}-1}=2-\dfrac{1}{2^{2022}-1}\)
Ta có
\(2^{2023}>2^{2022}\Rightarrow2^{2023}-1>2^{2022}-1\)
\(\Rightarrow\dfrac{1}{2^{2023}-1}< \dfrac{1}{2^{2022}-1}\Rightarrow2-\dfrac{1}{2^{2023}-1}>2-\dfrac{1}{2^{2022}-1}\)
\(\Rightarrow C>D\)
Lời giải:
Gọi $d$ là ƯCLN $(2^{2024}+3, 2^{2023}+1)$
Ta có:
$2^{2024}+3\vdots d$
$2^{2023}+1\vdots d$
$\Rightarrow 2^{2024}+3-2(2^{2023}+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
$\Rightarrow \frac{2^{2024+3}{2^{2023}+1}$ là ps tối giản.
Lời giải:
Gọi $d$ là ƯCLN $(2^{2024}+3, 2^{2023}+1)$
Ta có:
$2^{2024}+3\vdots d$
$2^{2023}+1\vdots d$
$\Rightarrow 2^{2024}+3-2(2^{2023}+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
$\Rightarrow \frac{2^{2024+3}{2^{2023}+1}$ là ps tối giản.
chứng tỏ 2+2^2+2^3+...+2^2023+2^2024
=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+(2^9+2^10+2^11+2^12)+.....+(2^2021+2^2022+2^2023+2^2024)
=30+2^5.(2+2^2+2^3+2^4)+2^9.(2+2^2+2^3+2^4)+.....+2^2021.(2+2^2+2^3+2^4)
=30+2^5.30+2^9.30+......+2^2021.30
=30.(1+2^5+2^9+....+2^2021) chia hết cho 5 (vì 30 chia hết cho 5)
vậy 2+2^2+2^3+....+2^2023+2^2024 chia hết cho 5