K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2017

Ta có:

        72004=74.501=A1

      =>A1:10=(A0+1):10=B0+1=B1=>72004:10 dư 1

        32003=34.500+3=34.500+33=C1+27=D8:10 dư 8

  •  
6 tháng 3 2017

Ta xét chữ số tận cùng của 72004 và 32003

ta có: 72004 = 74.501 = (.....1)501 = .........1 => tận cùng là 1 => chia 10 dư 1

ta có: 32003 = 34.500+3 = (......1)500 . 33 = (........1) . 27 = ......7 => tận cùng là 7 => chia 10 dư 7

Vậy: 72004 chia 10 dư 1 ; 32003 chia 10 dư 7

1 tháng 8 2018

239 học sinh 

20 tháng 8 2018

239 học sinh

AH
Akai Haruma
Giáo viên
6 tháng 8 2023

Lời giải:

Gọi tổng số học sinh khối 7 là $a$ (em).

Theo bài ra ta có: $a-2\vdots 3; a-3\vdots 4; a-4\vdots 5; a-5\vdots 6, a-9\vdots 10$

$\Rightarrow a+1\vdots 3,4,5,6,10$

$\Rightarrow a+1 =BC(3,4,5,6,10)$

$\Rightarrow a+1\vdots BCNN(3,4,5,6,10)$

$\Rightarrow a+1\vdots 60$

$\Rightarrow a+1\in\left\{0; 60; 120; 180; 240; 300;...\right\}$

Mà $a$ trong khoảng từ 235 đến 250 nên $a=240$ (em)

Gọi số học sinh khối 7 là: a

Theo đề bài,

-biết số học sinh chia cho 3 dư 2

=>(a+1)\(⋮\)3

-a chia 4 dư 3

=>(a+1)\(⋮4\)

-a chia cho 5 dư 4

=>(a+1)\(⋮5\)

-a chia cho 6 dư 5

=>(a+1)\(⋮6\)

-a chia 10 dư 9

=>(a+1)\(⋮10\)

Từ đó =>(a+1)\(\in BC\left(3;4;5;6;10\right)\) (và \(236\le a+1\le251\))

BCNN(3;4;5;6;10)=23.3.5=120

<=> BCNN(3;4;5;6;10)=B(120)={0;120;240;360;480;...}

Mà \(236\le a+1\le251\)

=>a+1=240

=>a=240-1

=>a=239

Vậy số học sinh khối 7 ngôi trường đó là 239

16 tháng 3 2017

Gọi số cần tìm là a : 

Khi đó a + 1 chia hết cho 5 

          a + 1 chia hết cho 7 

          a + 1 chia hết cho 10

Nên a + 1 thuộc BCNN (5;7;10) = 70 

=> a + 1 = 70

=> a = 69

Vậy số cần tìm là 69

16 tháng 3 2017

số đó là 1

7 tháng 6 2018

gọi số đó là a, ta có:

a chia 10 dư 3; chia 12 dư 5; chia 15 dư 8 và số đó chia hết cho 19. suy ra a=7 chia hết cho 10,12,15=> a+7 thuộc BCNN(10,12,15)

ta có BCNN(10,12,15)=60

suy ra a+7 thuộc B(60)={0,60,120,180,240,300,360,420,480,540,600,660,720,780,.....}

bạn lấy mấy số đó trừ 7 rồi xem số nào chia hết cho 19 là dc

DT
13 tháng 12 2023

Theo bài ra, suy ra : N + 1 chia hết cho cả 2, 3, 7 và 11

Do N là số dương nhỏ nhất 

Nên N + 1 thuộc BCNN(2,3,7,11) 

Mà BCNN(2,3,7,11) = 2.3.7.11 = 462

Hay N+1 = 462

=> N = 461

13 tháng 12 2023

Theo bài ra, suy ra : N + 1 chia hết cho cả 2, 3, 7 và 11

Do N là số dương nhỏ nhất 

Nên N + 1 thuộc BCNN(2,3,7,11) 

Mà BCNN(2,3,7,11) = 2.3.7.11 = 462

Hay N+1 = 462

=> N = 461