Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 71+ 72 + 73 + ...+ 736
= ( 71 + 72 ) + ( 73 + 74 ) + ... + ( 735 + 736 )
= 56 + 56 + ... + 56
Mà khi một trong hai số hạng chia hết cho số a thì tổng đó chia hết cho a
=> 56 chia hết cho 8 => A khi chia cho 8 được số dư là 0
ta thấy \(7^1\)+\(7^2\)+\(7^3\)+\(7^4\)là một số chia hết cho 8
\(7^5\)+\(7^6\)+\(7^7\)+\(7^8\)là một số chia hết cho 8
........................
như vậy tổng của 4 lũy thừa liên tiếp sẽ là một số chia hết cho 8 .
trong đó có 36 lũy thừa mà 36 là một số chia hết cho 4 nên A chia 8 dư 0.
Hết
.............................................................................................
mình giải vậy đúng không?
sai thì giúp mình sửa lai bài làm nha!
a, Đặt A = 810 - 89 - 88 = 88.82 - 88.81 - 88.1 = 88.(82 - 81 -1) = 88.55
Vì 55 chia hết cho 55 nên 88 chia hết cho 55 hay A chia hết cho 55.
b, Đặt B = 76 + 75 - 74 = 74.72 + 74.71 + 74.1 = 74.(72 + 71 - 1) = 74.55
Vì 55 chia hết cho 55 nên 74.55 chia hết cho 55 hay B chia hết cho 55.
c, Đặt C = 817 - 279 - 913 = (34)7 - (33)9 - (32)13 = 328 - 327 - 326 ( Đến dây thì tương tự như phần a bạn nhé)
d, Phần này cũng tương tự phần a.
Ở ngoặc đầu tiên của A thì mỗi số đều chia hết cho 2(dựa vào cơ số).
Vế tiếp theo thì toàn số lẻ lũy thừa lên chia 2 dư 1,mà có 4 số nên chia hết cho 2.
Vậy hiệu của chúng,tức A chia hết cho 2.
2006 là số chẵn lũy thừa lên chia hết cho 2 còn số kia lẻ nên chia 2 dư 1.
Vậy chia 2 dư 1.
Chúc em học tốt^^
1) gọi hai số chẵn liên tiếp là 2n và 2n+2 ( với n là số tự nhiên)
=> tích của hai số tự nhiên liên tiếp:
2n(2n+2)=2n[2(n+1)]=4n(n+1)
ta thấy: 2n(2n+1)\(⋮\)2 ; 4n(n+1)\(⋮\)4
=> 2n(2n+2)\(⋮\)8
vậy tích của hai số chẵn liên tiếp thì chia hết cho 8
\(B=7^0+7^1+7^2+7^3+4^4+...+7^{19}+7^{20}\)
\(=7^0+\left(7^1+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{19}+7^{20}\right)\)
\(=1+7\left(1+7\right)+7^3\left(1+7\right)+...+7^{19}\left(1+7\right)\)
\(=1+7.8+7^3.8+...+7^{19}.8\)
\(=1+8\left(7+7^3+...+7^{19}\right)\) chia 8 dư 1
\(7E=7+7^2+7^3+...+7^{37}\)
\(7E-E=7^{37}-7\)
\(6E=7\left(7^{36}-1\right)\)
Ta đi chứng minh 736-1 chia hết cho 6.8=48
Có :72=49 đồng dư với 1 (mod48)
=> 736 đồng dư với 1 (mod48)
=> 736-1 chia hết cho 48 nên 7(736-1) chia hết cho 48
=> E chia hết cho 8
E = (7+72)+(73+74) + ....+ (735+736)
= 7.(1+7) + 72.(1+7) + ..... 735.(1+7)
= 8. (7+72+....735) chia hết cho 8.
(1) 7^0=01
(2) 7^1=07
(3) 7^2=49
(4) 7^3=343
-----------
(5) 7^4=2401
(6) 7^5=16807
(7) 7^6=117649
(8) 7^7=823543
----------------
(9) 7^8=.....64801
(10) 7^9=.....53607
v.v.
Thấy chu kỳ lặp đi lặp lại hai số sau cùng 01; 07; 49; 43, nhóm 4 số.
Đến số luỷ thừa 100 thì số lặp đi lặp lại 25 lần nhóm 4, số cuối 01
Vậy 7^101 là một dãy số ...07 chia 10 dư 7
=7^8(7^2-7+1) + 7
=7^8.43 + 7
7^8.43 chia hết cho 43 nên => biểu thức trên chia cho 43 dư 7