K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2019

a,Mình sẽ dùng bài toán phụ a^n-1 chia hết cho a-1 nhé(bạn chưa học thì mình chịu:))

Có \(5^{100}=5^{5^{20}}=3125^{20}\)

Mà 3125-1=3124 chia hết cho 1

Nên \(5^{100}-1\)chia hết cho 11

hay 5^100 chia 11 dư 1

b,Có 3^10=3^6.3^4

mà 3^4=81 chia 7 dư 4

3^6-1 chia hết cho 7(bấm máy tính)

nên 3^10 chia 7 dư 4(*)

Có 4^30=(4^3)^10=64^10

Mà 64^10-1 chia hết cho 63 hay cũng chia hết cho 7

nên 4^30 chia 7 dư 1(**)

Từ (*) và (**) có 4^30+3^10 chia 7 dư 5(Câu này mình không chắc)

c,Có 7^125=7^124.7

Mà 7^124=49^62

mà 49^62-1 chia hết cho 48 hay cũng chia hết cho 24

nên 7^124 chia 24 dư 1

hay 7^125 chia 24 dư 7

Chúc bạn học tốt!

9 tháng 10 2016

bit lam rùi

9 tháng 10 2016

kq là 7/15

31 tháng 8 2017
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1) b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c) =(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc) c)Đặt x-y=a;y-z=b;z-x=c a+b+c=x-y-z+z-x=o đưa về như bài b d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y) =x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

Nguyễn Trà My

Phần a)

\(3\times\left(\frac{1}{2}-x\right)+\frac{1}{3}=\frac{7}{6}-x\)

\(32-3x+13=76-x\)

\(116-3x=76-x\)

\(116-76=3x-x\)

\(46=2x\)

\(x=46\div2\)

\(x=13\)

22 tháng 9 2017

a)  \(3.\left(\frac{1}{2}-x\right)+\frac{1}{3}=\frac{7}{6}-x\)

\(3.\left(\frac{1}{2}-x\right)+x=\frac{7}{6}-\frac{1}{3}\)

\(\Rightarrow\frac{3}{2}-3x+x=\frac{5}{6}\)

\(-3x+x=\frac{5}{6}-\frac{3}{2}\)

\(2x=-\frac{2}{3}\)

\(x=-\frac{2}{3}:2\)

\(x=-\frac{1}{3}\)

28 tháng 11 2017

\(A=\frac{49^{24}.125^{10}.2^8-5^{30}.7^{49}.4^5}{5^{29}.16^2.7^{48}}\)

\(A=\frac{\left(7^2\right)^{24}.\left(5^3\right)^{10}.2^8-5^{30}.7^{49}.\left(2^2\right)^5}{5^{29}.\left(2^4\right)^2.7^{48}}\)

\(A=\frac{7^{49}.5^{30}.2^8-5^{30}.7^{49}.2^{10}}{5^{29}.2^8.7^{48}}\)

\(A=\frac{7^{48}.5^{30}.2^8\left(1-28\right)}{5^{29}.2^8.7^{48}}\)

\(A=5.\left(-27\right)\)

\(A=-135\)

2 tháng 4 2017

bài 1

a)<

b)>

9 tháng 9 2017

a) = 53. 52- 53 .5+ 53

= 53 .( 52- 5+1)

=53. 21 mà 21 chia hết cho 7

=) 55 - 54 + 53 chia hết cho 7

b)= 74.72 + 74.7 -74

= 74( 72+ 7-1)

=74. 55 mà 55chia hết cho 11

=)7^6 + 75-74 chia hết cho 11

c)=( 2.3.4)2.27 . (2.27)2.3.4 . ( 2)2.5

= ( 6. 4) 6.9 . ( 6. 9 ) 6.4. 210

= 246. 249. 546.549 . 210

=12966 . 12964.210mà 1296 chia hết cho 72 ( vì 1296 : 72 bằng 18)

=)24^54. 54^24 + 2^10 chia hết cho 72 ^53

26 tháng 9 2017

ê ko tick à

6 tháng 9 2016

a.(-2/3+3/7) : 4/5 + (-1/3+4/7) : 4/5

= [(-2/3 + 3/7) + (-1/3 + 4/7)] : 4/5

= [(-2/3 + (-1/3) + (3/7 + 4/7)] : 4/5

= [-1 + 1] : 4/5

= 0 : 4/5

= 0   

6 tháng 9 2016

a) \(\left(\frac{-2}{3}+\frac{3}{7}\right).\frac{5}{4}+\left(\frac{-1}{3}+\frac{4}{7}\right).\frac{5}{4}\)

=\(\left(\frac{-2}{3}+\frac{-1}{3}+\frac{3}{7}+\frac{4}{7}\right).\frac{5}{4}\)

\(0.\frac{5}{4}=0\)

b) \(\frac{5}{9}:\left(\frac{1}{11}-\frac{5}{22}+\frac{1}{15}-\frac{2}{3}\right)\)

=\(\frac{5}{9}:\frac{-81}{110}=\frac{-550}{729}\)

25 tháng 9 2016

a,   11/13 - ( 5/42 - x ) = - (5/28 - 11/13)

    11/13 - (5/42 - x) = - 5/28 + 11/13

    - (5/42 - x) + 5/28 = -11/13 + 11/13

 - 5/42 + x + 5/28 = 0

- 5/42 + x = 0 - 5/28

- 5/42 + x = - 5/28

x = -5/28 +5/42

x = - 5/84

b, / x + 4/15 \ - / - 3,75 \ = - / - 2,15 \

./ x + 4/15 \ - 3,75 = - 2,15

/ x + 4/15 \ = -2,15 + 3,75

/ x + 4/15 \ = 1,6

x + 4 / 15 = 1,6                      hoặc x+ 4/15 = - 1,6

x = 1,6 - 4/15                                   x = - 1,6 -4/15

x = 4/3                                              x = -28/15

Vậy x = 4/3 hoặc x = - 28/15

c, ( 0,25 - 30% x ) . 1/3 = 1/4 - 31/6

( 1/4 - 3/10 x ) . 1/3 = - 59/12

( 1/4 - 3/10 x ) = - 59/12 : 1/3

1/4 - 3/10 x = - 59/4

3/10 x = 1/4 + 59/4

3/10 x = 15

x = 15 : 3/10

x = 50

d, ( x - 1/2 ) : 1/3 + 5/7 = 68/7

( x - 1/2 ) : 1/3 = 68/7 - 5/7

( x - 1/2 ) : 1/3 = 63/7

( x - 1/2 ) = 63/7 . 1/3

x -1/2 = 3 

x = 3 + 1/2

x = 7/2