K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2022

Có: ∠EKH = ∠KCB
Mà 2 góc ở vị trí đồng vị
⇒ HK // BC
Xét △EBC có:
H trung điểm EB
HK // BC
⇒ HK đường trung bình
⇒ HK = \(\dfrac{1}{2}\)BC
⇒ BC = 2HK
⇒ x = 2 . 4 = 8
Xét △AEB ⊥ A, có:
AH đường trung tuyến (H trung điểm EB)
⇒ AH = \(\dfrac{1}{2}\)EB
⇒ EB = 2AH = 2 . 2,5 = 5
Vì AE = ED
Mà ED = 3
⇒ AE = 3
Áp dụng định lý Pytago vào △AEB ⊥ A
⇒ \(EB^2=AE^2+AB^2\)
⇒ AB = y = \(\sqrt{BE^2-AE^2}\) = \(\sqrt{5^2-3^2}\) = \(4\)
Vậy x = 8 và y = 4

a:


b: TH1: \(\hat{BAD}>90^0;\hat{ABD}>90^0\)

Ta có: ABCD là hình thang

=>\(\hat{ABC}+\hat{BCD}=180^0\)

=>\(\hat{BCD}<180^0-90^0=90^0\)

=>\(\hat{BCD}<\hat{BAD}\)

TH2: \(\hat{ADC}>90^0;\hat{DCB}>90^0\)

Ta có: ABCD là hình thang

DC//AB

=>\(\hat{CDA}+\hat{DAB}=180^0\)

=>\(\hat{DAB}<180^0-90^0=90^0\)

=>\(\hat{DAB}<\hat{DCB}\)

c: Xét tứ giác ABCD có

AB//CD
AB=CD

Do đó: ABCD là hình bình hành

a: Xét ΔABC có

AF,BE,CD là các đường trung tuyến

G là trọng tâm

Do đó: AF,BE,CD đồng quy tại G

Xét tứ giác AGBK có

D là trung điểm chung của AB và KG

=>AGBK là hình bình hành

=>AG//BK và AG=BK

Xét tứ giác AGCH có

E là trung điểm chung của AC và GH

=>AGCH là hình bình hành

=>AG//CH và AG=CH

Ta có: AG//BK

AG//CH

Do đó: BK//CH

ta có: AG=BK

AG=CH

Do đó: BK=CH

Xét tứ giác BKHC có

BK//HC

BK=HC

Do đó: BKHC là hình bình hành

b: Ta có: C,G,D thẳng hàng

G,D,K thẳng hàng

Do đó: C,G,D,K thẳng hàng

=>CK đi qua G

Ta có: B,G,E thẳng hàng

G,E,H thẳng hàng

Do đó: B,G,E,H thẳng hàng

=>BH đi qua G

BCHK là hình bình hành

=>BH cắt CK tại trung điểm của mỗi đường

=>G là trung điểm chung của BH và CK

Hình bình hành BCHK trở thành hình chữ nhật khi KB⊥BC

=>AG⊥BC

=>AF⊥BC

Xét ΔABC có

AF là đường cao

AF là đường trung tuyến

Do đó: ΔABC cân tại A

=>AB=AC

QT
Quoc Tran Anh Le
Giáo viên
28 tháng 8

a:


b: TH1: \(\hat{BAD}>90^0;\hat{ABD}>90^0\)

Ta có: ABCD là hình thang

=>\(\hat{ABC}+\hat{BCD}=180^0\)

=>\(\hat{BCD}<180^0-90^0=90^0\)

=>\(\hat{BCD}<\hat{BAD}\)

TH2: \(\hat{ADC}>90^0;\hat{DCB}>90^0\)

Ta có: ABCD là hình thang

DC//AB

=>\(\hat{CDA}+\hat{DAB}=180^0\)

=>\(\hat{DAB}<180^0-90^0=90^0\)

=>\(\hat{DAB}<\hat{DCB}\)

c: Xét tứ giác ABCD có

AB//CD
AB=CD

Do đó: ABCD là hình bình hành

Bài 2:

a: \(\left(-\frac13x^2y\right)\cdot2xy^3=\left(-\frac13\cdot2\right)\cdot x^2\cdot x\cdot y\cdot y^3=-\frac23x^3y^4\)

b: \(\left(-\frac34x^2y\right)\cdot\left(-xy\right)^3=\left(-\frac34\right)\cdot\left(-1\right)\cdot x^2\cdot x^3\cdot y\cdot y^3=\frac34x^5y^4\)

c: \(\frac35\cdot x^2y^5\cdot x^3y^2\cdot\frac{-2}{3}=\left(\frac35\cdot\frac{-2}{3}\right)\cdot x^2\cdot x^3\cdot y^5\cdot y^2=-\frac25x^5y^7\)

d: \(\left(\frac34x^2y^3\right)\cdot\left(2\frac25x^4\right)=\frac34x^2y^3\cdot\frac{12}{5}x^4=\frac34\cdot\frac{12}{5}\cdot x^2\cdot x^4\cdot y^3=\frac95x^6y^3\)

e: \(\left(\frac{12}{15}x^4y^5\right)\cdot\left(\frac59x^2y\right)=\frac45\cdot\frac59\cdot x^4\cdot x^2\cdot y^5\cdot y=\frac49x^6y^6\)

f: \(\left(-\frac17x^2y\right)\left(-\frac{14}{5}x^4y^5\right)=\frac17\cdot\frac{14}{5}\cdot x^2\cdot x^4\cdot y\cdot y^5=\frac25x^6y^6\)

Bài 1: Các đơn thức là \(x^2y;-13;\left(-2\right)^3xy^7\)

17 tháng 8

17 tháng 8

a: Xét ΔKAD và ΔBDA có

\(\hat{KAD}=\hat{BDA}\) (hai góc so le trong, AK//BD)

AD chung

\(\hat{KDA}=\hat{BAD}\) (hai góc so le trong, AB//CD)

Do đó: ΔKAD=ΔBDA

=>KA=BD

mà BD=AC

nên AK=AC

=>ΔAKC cân tại A

b: ΔAKC cân tại A

=>\(\hat{AKC}=\hat{ACK}\)

\(\hat{AKC}=\hat{BDC}\) (hai góc đồng vị, BD//AK)

nên \(\hat{BDC}=\hat{ACD}\)

Xét ΔBDC va ΔACD có

BD=AC

\(\hat{BDC}=\hat{ACD}\)

CD chung

Do đó: ΔBDC=ΔACD

=>\(\hat{BCD}=\hat{ADC}\)

=>ABCD là hình thang cân

Từ đề bài, ta có hình vẽ sau:

\(\hat{BAC}=\hat{BAH}+\hat{CAH}=10^0+10^0=20^0\)

Xét ΔABC có

AH là đường cao

AH là đường phân giác

Do đó: ΔABC cân tại A

=>\(\hat{ABC}=\frac{180^0-\hat{BAC}}{2}=\frac{180^0-20^0}{2}=80^0\)

Ta có: \(\hat{KBC}+\hat{KBA}=\hat{ABC}\) (tia BK nằm giữa hai tia BA và BC)

=>\(\hat{KBA}=80^0-40^0=40^0\)

Xét ΔABG và ΔACG có

AB=AC

\(\hat{BAG}=\hat{CAG}\)

AG chung

Do đó: ΔABG=ΔACG

=>\(\hat{ABG}=\hat{ACG}\)

=>\(x=40^0\)