K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
12 tháng 11 2020

\(A^2=\left(\sin\alpha+\cos\alpha\right)^2\le2\left(sin^2\alpha+cos^2\alpha\right)=2\)

\(\Leftrightarrow A\le\sqrt{2}\)dấu bằng xảy ra khi \(\sin\alpha=\cos\alpha\)

\(B=\frac{1}{\sin^2\alpha}+\frac{1}{\cos^2\alpha}\ge\frac{4}{sin^2\alpha+cos^2\alpha}=4\)

dấu bằng xảy ra khi \(sin^2\alpha=cos^2\alpha\)

27 tháng 6 2017

a.Ta có \(\tan\alpha.\cot\alpha=1\Rightarrow\tan\alpha=\frac{1}{\cot\alpha}\)

\(\Rightarrow\frac{1}{\cot\alpha}+\cot\alpha=2\Rightarrow\cot^2\alpha-2\cot\alpha+1=0\)

\(\cot\alpha=1\Rightarrow\alpha=45^0\)

b.Ta có \(\sin^2\alpha+\cos^2\alpha=1\Rightarrow\cos^2\alpha=1-\sin^2\alpha\)

\(\Rightarrow7.\sin^2\alpha+5\left(1-\sin^2\alpha\right)=\frac{13}{2}\)\(\Leftrightarrow\sin^2\alpha=\frac{3}{4}\Leftrightarrow\orbr{\begin{cases}sin\alpha=\frac{\sqrt{3}}{2}\\sin\alpha=\frac{-\sqrt{3}}{2}\end{cases}}\)

\(\Rightarrow\alpha=60^0\)

29 tháng 9 2019

1+cot a=1+cos a/sin a =(sin a+cos a)/sin a =>sin2 a/(1+cot a)=sin3 a/(sin a+cos a)

1+tan a= 1+ sin a/cos a = (cos a+sin a)/cos a => cos2 a/(1+tan a)=cos3 a(sin a+cos a)

biểu thức là sin a.cos a +(sin3 a+cos3 a)(sin a+cos a)=sina.cosa + sin2a-sina.cosa+cos2a=         sin2a+cos2a

12 tháng 10 2019

a) Ta có: \(\sin^2\alpha+\cos^2\alpha=1\)

\(\sin\alpha=\cos\alpha\)\(2\sin^2\alpha=1\)\(\sin^2\alpha=\frac{1}{2}\)

\(\sin\alpha=\frac{1}{\sqrt{2}}\)\(\alpha=45\)độ

b) \(2\sin^2\alpha+3\cos^2\alpha=\frac{9}{4}\)

\(2\left(\sin^2\alpha+\cos^2\alpha\right)+\cos^2\alpha=\frac{9}{4}\)\(\cos^2\alpha=\frac{1}{4}\)

\(\cos\alpha=\frac{1}{2}\)\(\alpha=30\) dộ

13 tháng 10 2019

Cảm ơn cảm ơn