Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Ta có \(\tan\alpha.\cot\alpha=1\Rightarrow\tan\alpha=\frac{1}{\cot\alpha}\)
\(\Rightarrow\frac{1}{\cot\alpha}+\cot\alpha=2\Rightarrow\cot^2\alpha-2\cot\alpha+1=0\)
\(\cot\alpha=1\Rightarrow\alpha=45^0\)
b.Ta có \(\sin^2\alpha+\cos^2\alpha=1\Rightarrow\cos^2\alpha=1-\sin^2\alpha\)
\(\Rightarrow7.\sin^2\alpha+5\left(1-\sin^2\alpha\right)=\frac{13}{2}\)\(\Leftrightarrow\sin^2\alpha=\frac{3}{4}\Leftrightarrow\orbr{\begin{cases}sin\alpha=\frac{\sqrt{3}}{2}\\sin\alpha=\frac{-\sqrt{3}}{2}\end{cases}}\)
\(\Rightarrow\alpha=60^0\)
\(A^2=\left(\sin\alpha+\cos\alpha\right)^2\le2\left(sin^2\alpha+cos^2\alpha\right)=2\)
\(\Leftrightarrow A\le\sqrt{2}\)dấu bằng xảy ra khi \(\sin\alpha=\cos\alpha\)
\(B=\frac{1}{\sin^2\alpha}+\frac{1}{\cos^2\alpha}\ge\frac{4}{sin^2\alpha+cos^2\alpha}=4\)
dấu bằng xảy ra khi \(sin^2\alpha=cos^2\alpha\)
\(\Delta\)ABC vg tại A , ad tỉ số lg giác trong tg vg ta có
a,\(\sin^2\alpha+\cos^2\alpha\)=\(\frac{AB^2}{BC^2}\)+ \(\frac{AC^2}{BC^2}\)= \(\frac{BC^2}{BC^2}\)=1
b,\(\frac{\sin\alpha}{\cos\alpha}\)= \(\frac{AB}{BC}\): \(\frac{AC}{BC}\)= \(\frac{AB}{AC}\)= \(\tan\alpha\)
#mã mã#
1.Ta có :
\(\cot41=\tan49\) ; \(\cot46=\tan44\)
sắp xếp :\(\tan27< \tan44< \tan47< \tan49\)\(\Rightarrow\tan27< \cot46< \tan47< \cot41\)
2.ta có
\(\cos28=\sin62;\cos41=\sin49\)
\(A=\cos^228+\cos^241+\cos^262+\cos^249\)
\(\Rightarrow A=\sin^262+\cos^262+\sin^249+\cos^249\)
\(\Rightarrow A=1+1=2\)