Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(\overline{abc}+\overline{ab}+a=473\)
\(100\times a+10\times b+c+10\times a+b+a=473\)
\(111\times a+11\times b+c=473\)
Suy ra \(111\times a<555\)
Suy ra \(a<5\)
Xét các trường hợp sau:
TH1: $a=1$ thì $11\times b+c=362$
Mà $11\times b+c$ lớn nhất bằng $11\times 9+9=108$ nên trường hợp này loại
TH2: $a=2$ thì $11\times b+c=251$. Tương tự như TH1 thì TH này loại
TH3: $a=3$ thì $11\times b+c=140$. Tương tự như TH1 thì TH này loại
TH4: $a=4$ thì $11\times b+c=29$
Suy ra $11\times b< 33$
Suy ra $b<3$
Nếu $b=0$ thì $c=29$ (loại)
Nếu $b=1$ thì $c=18$ (loại)
Nếu $b=2$ thì $c=7$ (chọn)
Vậy số cần tìm là $427$
Đúng là thầy vì thầy là giáo viên nên đương nhiên phải đúng rồi
abc+ab+a=1074
=>100a+10b+c+10a+b+a=1074
=>111a+11b+c=1074
=>aaa+bb+c=1074
Ta thấy số có 3 c/s giống nhau cộng với số có 2 c/s giống và số 1 c/s được 1 số có 4 chữ số có 2 trường hợp
*)Số có 3 c/s đó là số 999(nếu bb+c<100) =>bb+c=75 =>bb=66 c=9
*)Số có 3 c/s đó là 888 (nếu bb+c>100)=>bb+c=186(L)
Vậy abc=979
ta co ; abc + ab + a=730
aaa+bb=730
a00+aa+bb=730
a*100+[a+b]*11=730
con dau ban tu biet
k cho minh nhe
gọi số đó là :ab
ab = 3 x (a+b)
Ta có: 10a + b= 3a + 3b
10a-3a = 3b - b
7a=2b
Vậy ab = 27
abc = 500
ab = 20
a = 5