Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên cần tìm là \(\overline{ab}\)(\(a,b\inℕ\), \(a\ne0\), \(a,b\le9\))
Vì tổng các chữ số của số đó là 9 nên ta có phương trình \(a+b=9\)(1)
Ta có \(\overline{ab}=10a+b\)
Khi viết chữ số 0 vào giữa hai chữ số thì ta được số mới là \(\overline{a0b}=100a+b\)
Vì số mới gấp 9 lần số đã cho nên ta có phương trình \(100a+b=9\left(10a+b\right)\Leftrightarrow100a+b=90a+9b\Leftrightarrow10a=8b\Leftrightarrow b=\frac{5}{4}a\)(2)
Từ (1) và (2) \(\Rightarrow a+\frac{5}{4}a=9\Leftrightarrow\frac{9}{4}a=9\Leftrightarrow a=4\left(nhận\right)\)
\(\Rightarrow b=9-a=9-4=5\)(nhận)
Vậy số tự nhiên ban đầu là 45
Bài làm:
Gọi số cần tìm là ab; điều kiện: ab > 17
số mới là a0b
Ta có phương trình:
ab.9 = a0b
⇔ [a.10 + (9 - a)].9 = a.100 + 9 - a
⇔ (a.9 + 9).9 = a.99 + 9
⇔ a.81 + 81 = a.99 + 9
⇔ a.81 - a.99 = 9 - 81
⇔ a.(-18) = -72
⇔ a = 4(thỏa mãn điều kiện)
⇒ b = 9 - a = 9 - 4 = 5
Vậy số cần tìm là 45.
Gpoij số cần tìm là : ab
Khi đó: b gấp đôi a
Ta có: ab + 370 = a1b
<=> 10a + b + 370 = 100a + 10 + b
=> b - b + 370 - 10 = 100a - 10a
=> 360 = 90a
=> a = 360 : 90
=> a = 4
Vì đầu bài bài cho b gấp đổi a
=> b = 4 x 2
=> b = 8
Vậy số ban đầu là 48
Gọi số cần tìm là ab = 10a + b
Số sau khi thêm số 0 là a0b = 100a + b
Theo đề bài ta có
6(10a + b) = 100a + b
\(\Leftrightarrow60a+6b=100a+b\)
\(\Leftrightarrow8a=b\)
Mà \(0\le b\le9\)
\(0\le8a\le9\)
\(\Rightarrow a=1;b=8\)
Vậy số cần tìm là 18
Bài 1:
Gọi số bé là ab, số lớn là 4ab
Theo bài ra ta có: 4ab+ab=446
=>400+ab+ab=446
=>2.ab=446-400
=>2.ab=46
=>ab=46:2
=>ab=23
=>4ab=423
Vậy 2 số cần tìm là 23 và 423
Bài 2:
Gọi số cầm tìm là ab
Theo bài ra ta có: 3ab=5.ab
=>300+ab=5.ab
=>5.ab-ab=300
=>ab=300:4
=>ab=75
Vậy số cần tìm là 75.
viết thêm chữ số 4 là cộng 400 rồi vẽ sơ đồ tổng và tỉ
Gọi số đó là \(\overline{xy}\) (với x;y là các chữ số từ 0 tới 9, `x \neq 0`)
Do tổng 2 chữ số bằng 9 nên: \(x+y=9\) (1)
Số mới sau khi viết thêm chữ số 0 vào giữa: \(\overline{x0y}\)
Do số mới gấp 9 lần số cũ nên:
\(\overline{x0y}=9\overline{xy}\Leftrightarrow100x+y=9\left(10x+y\right)\)
\(\Leftrightarrow10x-8y=0\) (2)
Từ (1) và (2) ta có hệ: \(\left\{{}\begin{matrix}x+y=9\\10x-8y=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=4\\y=5\end{matrix}\right.\)
Vậy số đó là 45
Gọi số đó là `overline{ab} (a ne 0)`
`=> overline{a0b} = 9 . overline{ab}`
`=> b ∈ {0; 5}`
Xét `b = 0`
thì: `overline{a0} . 9 = overline{a00}`
`=> overline{a0} = overline{a00} : 9`
Hay `overline{a00} vdots 9`
`<=> a + 0 + 0 vdots 9`
`<=> a = 9`
Khi đó: `overline{a00} : 9 = 900 : 9 = 100` (không thỏa mãn)
Xét `b = 5`
thì: `overline{a5} . 9 = overline{a05}`
`=> overline{a5} = overline{a05} : 9`
Hay `overline{a05} vdots 9`
`<=> a + 0 + 5 vdots 9`
`<=> a = 4`
Khi đó: `overline{a05} : 9 = 405 : 9 = 45` (Thỏa mãn)
Vậy số đó là `45`