Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là abcde
Ta tìm 3 chữ số đầu nếu ta thử là 322=1024(l)
Vậy 3 chữ số đầu là 312=961
Ta tìm 2 chữ số cuối nếu ta thu là 53 =125(l)
=> 2 chữ số cuối là: 43=64(tm)
Vậy số cần tìm là: 96164
tìm 3 chữ số đầu là nếu thử la 32^2=1024 loai
suy ra 3 chữ số đầu là 31^2 =961
giờ thì tìm 2 chữ số còn lại thử là 5^3 =125 loại
suy ra 2 chữ số cuối là 4^3=64 chọn
vậy số cần tìm là 96164
chuân 100% đó
Gọi số cần tìm là \(\overline{abc}\) (a,b,c \(\in N\), 10 > a,b,c \(\ge0\))
TH1: \(\overline{ab}=4\overline{bc}\)
=> \(10a+b=40b+4c\)
=> \(10a=39b+4c\)
Mà b\(\ge1,c\ge0\) => \(39b+4c\ge39\)
=> 10a \(\ge39\)
=> a \(\ge4\)
Do \(\overline{ab}\) là số chính phương
=> \(\overline{ab}\in\left\{49;64;81\right\}\)
- Với \(\overline{ab}=49\) => \(\left\{{}\begin{matrix}a=4\\b=9\end{matrix}\right.\) => 4c = -311 (loại)
- Với \(\overline{ab}=64=>\left\{{}\begin{matrix}a=6\\b=4\end{matrix}\right.\) => 4c = - 96 (loại)
- Với \(\overline{ab}=81=>\left\{{}\begin{matrix}a=8\\b=1\end{matrix}\right.\) => 4c = 41 => c = \(\dfrac{41}{4}\) (loại)
TH2: \(4\overline{ab}=\overline{bc}\)
=> 40a + 4b = 10b + c
=> 40a = 6b + c
Mà \(b\le9;c\le9\)
=> 6b + c \(\le63\)
=> 40a \(\le63\)
=> a \(\le1\)
=> a = 1
Mà \(\overline{ab}\) là số chính phương
=> \(\overline{ab}\) = 16
=> b = 6
=> c = 4
Vậy số cần tìm là 164
Giải:
Nếu chữ số đầu tiên là 1 thì chữ số tiếp theo phải là 9 để chia hết cho 19
Th1:Nếu chữ số tiếp theo là 5 thì chữ số tiếp theo là: 7, chữ số tiếp theo là 6, chữ số tiếp theo là 2 và không tìm được chữ số nào để 2a chia hết cho 19 hoặc 31
Th2: Nếu chữ số tiếp theo là 1 thì chữ số tiếp theo là 9,... cứ lặp lại như vậy ta được: số 191919..191
Tổng lớn nhất có thể của tổng các chữ số của số đó là: (1+9+1+9+..+1+9+1)=2020:2x10+1=10101
Chúc bạn học tốt!
uhm, sai rùi nha bạn. Vì 91 ko chia hết cho 19 hay 31. Nhưng dù sao cũng cảm ơn bạn vì đã giúp mình, mình có ý tưởng và làm đc rồi! ^-^
Các số là:
2035;2053;2305;2350;2503;2530;3025;3052;3205;3250;3502;3520;5023;5032;5203;5230;5302;5320
2035+2053+2305+2350+2503+2530+3025+3052+3205+3250+3502+3520+5023+5032+5203+5230+5302+5320=44563