K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2021

8 và 10 nha

6 tháng 8 2021

gọi hai số chãn dương liên tiếp là \(a\)và \(a+2\)trong đó \(\left(a>0\right)\)

theo giả thiết thì \(a^2+\left(a+2\right)^2=164\)

<=> \(a^2+a^2+4a+4=164\)

=> \(2a^2+4a-160=0\)

=>  \(\left(a-8\right)\left(a+10\right)=0\)=> \(\hept{\begin{cases}a=8\left(tm\right)\\a=-10< 0\left(ktm\right)\end{cases}}\)

12 tháng 2 2019

Không có 2 số nào thỏa mãn đề bài.

12 tháng 2 2019

bình phương 2 số là 244

12 tháng 2 2019

10 và 12 nhé bạn.

---------------------CHÚC BẠN HỌC GIỎI----------------------------------

15 tháng 11 2016

40,38 là 2 số đó

trung bình cộng là 39

10 tháng 2 2016

đề sai hả bạn?

 

26 tháng 5 2015

so thu nhat : -5

so thu 2: 15

1 tháng 6 2018

Số thứ nhất : -5

Số thứ hai : 15 

     Đ/S : ...  

              ....

Vậy 2 số cần tìm là 8 và 11Gọi 2 số tự nhiên cần tìm là a,b (a>b)
Theo giả thiết, ta có
a + b = 19 và a^2 + b^2 = 185
=> 2ab = (a+b)^2 - (a^2+b^2) = 176 <=> ab = 88
=> a,b là nghiệm của pt x^2 - 19x + 88 = 0 (*)
(*) <=> (x-11)(x-8) = 0 <=> x= 8 hoặc x = 11
=> (a,b) = (11;8)

8 tháng 6 2021

gọi x là số tự nhiên thứ nhất , y là số tự nhiên thứ hai . (x,y > 0)

tổng của chúng bằng 19

=> x + y = 19

<=> x = 19 - y

tổng các bình phương của chúng bằng 185

=> x^2 + y^2 = 185

<=> (19 - y)^2 + y^2 = 185

<=> 361 - 38y + y^2 + y^2= 185

<=> 2y^2 - 38y + 176 = 0

<=> y = 8 hoặc y = 11

y = 8 => x = 19 - 8 = 11

y = 11 => x = 19 - 11 = 8

vậy hai số tự nhiên đó là 8 và 11

19 tháng 4 2017

5 và 13

19 tháng 4 2017

5 VA 13 NHA BN

21 tháng 4 2018

Hai số đó là 13 và 12 

18 tháng 7 2022

3^2 + 4^2 = 9+16 = 25

8 tháng 6 2021

gọi 2 số đó là a và b \(\left(a,b>0\right)\)

Theo đề: \(\left\{{}\begin{matrix}a+b=19\left(1\right)\\a^2+b^2=185\left(2\right)\end{matrix}\right.\)

Từ (1) \(\Rightarrow\left(a+b\right)^2=19^2=361\left(3\right)\)

Lấy \(\left(3\right)-\left(2\right)\Rightarrow2ab=176\Rightarrow ab=88\left(4\right)\)

Từ (1) và (4) \(\Rightarrow a,b\) là nghiệm của pt \(x^2-19x+88=0\)

\(\Rightarrow\left(x-11\right)\left(x-8\right)=0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=8\\b=11\end{matrix}\right.\\\left\{{}\begin{matrix}a=11\\b=8\end{matrix}\right.\end{matrix}\right.\)

Vậy 2 số cần tìm là 8 và 11