K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2017

Giải:

Vì biểu thức đã cho là 1 số chính phương \(\Rightarrow\) Ta đặt \(x^2+2x+200=k^2\left(k\in N\right)\)

\(\Leftrightarrow k^2-\left(x^2+2x+1\right)=199\Leftrightarrow k^2-\left(x+1\right)^2=199\)

\(\Leftrightarrow\left(k-x-1\right)\left(k+x+1\right)=199\) (Áp dụng hằng đẳng thức \(a^2-b^2=\left(a-b\right)\left(a+b\right)\))

\(199\) là số nguyên tố và \(x\in N\) nên: \(\hept{\begin{cases}k-x-1=1\left(1\right)\\k+x+1=199\left(2\right)\end{cases}}\)

Lấy \(\left(2\right)-\left(1\right)\Leftrightarrow x=98\)

11 tháng 9 2021

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

28 tháng 6 2017

Đặt n^2+1234=a^2 ( a thuộc N)

ta có:

\(n^2+1234=a^2\)

\(\Leftrightarrow a^2-n^2=1234\)

\(\Leftrightarrow\left(a+n\right)\left(a-n\right)=1234\)

Vì a thuộc N và n thuộc N nên ta có bảng:

a+n112342617
a-n123416172
a617,5617,5309,5309,5
n-616,5616,5-207,5307,5
  (Không thỏa mãn) (Không thỏa mãn) (Không thỏa mãn) (Không thỏa mãn)

Vậy không có số tự nhiên n nào thỏa mãn đề bài

DD
10 tháng 5 2021

Giả sử \(m\ge n\).

Ta có: \(2^{2m}+2^{2n}=4^m+4^n=4^n\left(4^{m-n}+1\right)\).

Đặt \(4^{m-n}+1=l^2\Leftrightarrow4^{m-n}=\left(l-1\right)\left(l+1\right)\)

Dễ thấy với các trường hợp của \(m-n\)thì không có \(l\)thỏa mãn. 

Vậy phương trình vô nghiệm. 

10 tháng 5 2021

Bạn giải chi tiết hợn được không?

13 tháng 8 2017

\(C=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)

\(=4x\left(x+y+z\right)\left(x+y\right)\left(x+z\right)+y^2z^2\)

\(=4\left(x^2+xy+xz\right)\left(x^2+xy+xz+yz\right)+y^2z^2\left(1\right)\)

Đặt \(a=x^2+xy+xz\)và \(b=yz\)ta có:

\(\left(1\right)\Rightarrow C=4a\left(a+b\right)+b^2=b^2+4ab+4a^2=\left(b+2a\right)^2\)

Vậy C là một số chính phương.