K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2016

nhìu lắm

5 tháng 3 2016

có 1+2+2+...+19 số = 190 số

20 tháng 9 2018

Xửa đề:

\(\frac{x-y\sqrt{2015}}{y-z\sqrt{2015}}=\frac{m}{n}\) (vơi m, n thuộc Z)

\(\Leftrightarrow xn-ym=\left(yn-zm\right)\sqrt{2015}\)

\(\Leftrightarrow\hept{\begin{cases}xn-ym=0\\yn-zm=0\end{cases}}\)

\(\Rightarrow\frac{x}{y}=\frac{m}{n}=\frac{y}{z}\)

\(\Rightarrow xz=y^2\)

\(\Rightarrow x^2+y^2+z^2=x^2+2xz+z^2-y^2=\left(x+z+y\right)\left(x+z-y\right)\)

\(\Rightarrow\orbr{\begin{cases}x+y+z=1\left(l\right)\\x+z-y=1\end{cases}}\)

\(\Rightarrow x+z=y+1\)

\(\Leftrightarrow x^2+2xz+z^2=y^2+2y+1\)

\(\Leftrightarrow x^2+\left(y-1\right)^2+z^2=2\)

\(\Rightarrow x=y=z=1\)

20 tháng 9 2018

Đề ghi nhầm rồi. Xao không co z vậy

30 tháng 5 2017

\(M^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2xy}{\sqrt{yz}}+\frac{2yz}{\sqrt{zx}}+\frac{2xz}{\sqrt{yz}}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2x\sqrt{y}}{\sqrt{z}}+\frac{2y\sqrt{z}}{\sqrt{x}}+\frac{2z\sqrt{x}}{\sqrt{y}}\)

Áp dụng bđt Cô-si: \(\frac{x^2}{y}+\frac{x\sqrt{y}}{\sqrt{z}}+\frac{x\sqrt{y}}{\sqrt{z}}+z\ge4\sqrt[4]{\frac{x^2}{y}.\frac{x\sqrt{y}}{\sqrt{z}}.\frac{x\sqrt{y}}{\sqrt{z}}.z}=4x\)

tương tự \(\frac{y^2}{z}+\frac{y\sqrt{z}}{\sqrt{x}}+\frac{y\sqrt{z}}{\sqrt{x}}+x\ge4y\);\(\frac{z^2}{x}+\frac{z\sqrt{x}}{\sqrt{y}}+\frac{z\sqrt{x}}{\sqrt{y}}+y\ge4z\)

=>\(M^2+x+y+z\ge4\left(x+y+z\right)\Rightarrow M^2\ge3\left(x+y+z\right)\ge3.12=36\Rightarrow M\ge6\)

Dấu "=" xảy ra khi x=y=z=4

Vậy minM=6 khi x=y=z=4

30 tháng 5 2017

b1: Áp dụng bđt Cauchy Schwarz dạng Engel ta được:

\(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+y+y}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)

=>minP=1 <=> x=y=z=2/3

15 tháng 12 2019

Chứng minh cái BĐT phụ này là xong: \(\frac{x}{3-x}\ge\frac{3}{4}x-\frac{1}{4}\) (0 < x < 3)

\(\Leftrightarrow\frac{3\left(x-1\right)^2}{4\left(3-x\right)}\ge0\) (luôn đúng với 0 < x < 3)

Làm nốt.

2 tháng 8 2017

\(P=4\left(\frac{x}{y+4}+\frac{y}{z+4}+\frac{z}{x+4}\right)=4\left(\frac{x^2}{xy+4x}+\frac{y^2}{yz+4y}+\frac{z^2}{zx+4z}\right)\)

\(\ge\frac{4\left(a+b+c\right)^2}{xy+4x+yz+4y+zx+4z}=\frac{4.12^2}{4.12+\left(xy+yz+zx\right)}\)

\(\ge\frac{4.12^2}{4.12+\frac{\left(x+y+z\right)^2}{3}}=\frac{4.12^2}{4.12+\frac{12^2}{3}}=6\)

3 tháng 8 2017

Ta có

\(\frac{x}{\sqrt{y}}+\frac{x}{\sqrt{y}}+\frac{xy}{8}\ge3\sqrt[3]{\frac{x}{\sqrt{y}}.\frac{x}{\sqrt{y}}.\frac{xy}{8}}=\frac{3x}{2}\)

Tương tự cho 2 cái kia

Cộng lại theo vế:

\(2M\ge\frac{3}{2}\left(x+y+z\right)-\frac{xy+yz+zx}{8}\ge\frac{3}{2}\left(x+y+z\right)-\frac{\left(x+y+z\right)^2}{24}\ge12\)

Vậy  \(M\ge6\)