Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để abcd nguyên tố \(\Leftrightarrow\)abcd lẻ \(\Leftrightarrow\)d lẻ
Mà ta lại có : b^2 =cd + b - c
b^2 = 9c+d+b
=> b(b-1) = 9c + d \(\le72\)
=> \(7\le c< 8\)=> c = 7 => d =9 => b = 9 => a = 1 hoặc 4
Vậy số cần tìm là : 1979 hoặc 4979
ta có abcd chia hết cho 3 và 5 nên
d phải là tận cùng bằng 5 hoặc 0
a+b+c+d phải chia hết cho 3
từ đó ta rút ra có 2 số chia hết cho 5 là 8765 và 3210 nhưng vì 8765 ko chia hết cho 3 nên
số cần tìm là 3210
Ta có:
abcd chia hết cho 3 và 5 nên d phải là tận cùng bằng 5 hoặc 0
⇒a+b+c+d phải chia hết cho 3
từ đó ta rút ra có 2 số chia hết cho 5 là 8765 và 3210 nhưng vì 8765 không chia hết cho 3
⇒ số đó là 3210
Có 4 cách chia:
Cách chia bi nhiều túi nhất là cách 4,ta được 6 túi ,
Lần lượt chia đều bi đỏ vào 6 túi;
48:6= 8 (viên mỗi túi)
Chia đều bi xanh vào 6 túi;
30 :6=5 (viên mỗi túi)
Chia đều bi vàng vào 6 túi;
66:6=11 (viên mỗi túi)
Tổng cộng số viên bi trong mỗi túi ;
8+5+11=24 (viên mỗi túi)
#)Giải :
\(abcd=cd^2\Leftrightarrow100ab+cd=cd.cd\Leftrightarrow100ab=cd\left(cd-1\right)\Leftrightarrow\hept{\begin{cases}cd\left(cd-1\right)⋮25=5.5\\cd\left(cd-1\right)⋮4=2.2\end{cases}}\)
Mà cd và cd - 1 nguyên tố cùng nhau
Nên \(\Rightarrow\orbr{\begin{cases}cd⋮25\\cd-1⋮25\end{cases}}\)
Xét cả hai trường hợp, ta thấy chỉ có ab = 57 là thỏa mãn
Vậy số cần tìm là abcd = 5776