Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2/
\(\frac{a^2+bc}{a^2\left(b+c\right)}+\frac{b^2+ca}{b^2\left(c+a\right)}+\frac{c^2+ab}{c^2\left(a+b\right)}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow\frac{a^2+bc}{a^2\left(b+c\right)}-\frac{1}{a}+\frac{b^2+ca}{b^2\left(c+a\right)}-\frac{1}{b}+\frac{c^2+ab}{c^2\left(a+b\right)}-\frac{1}{c}\ge0\)
\(\Leftrightarrow\frac{\left(b-a\right)\left(c-a\right)}{a^2\left(b+c\right)}+\frac{\left(a-b\right)\left(c-b\right)}{b^2\left(c+a\right)}+\frac{\left(a-c\right)\left(b-c\right)}{c^2\left(a+b\right)}\ge0\)
\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-a^2b^4c^2-a^2b^2c^4\ge0\)
\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4\ge a^4b^2c^2+a^2b^4c^2+a^2b^2c^4\left(1\right)\)
Ma ta có: \(\hept{\begin{cases}a^4b^4+b^4c^4\ge2a^2b^4c^2\left(2\right)\\b^4c^4+c^4a^4\ge2a^2b^2c^4\left(3\right)\\c^4a^4+a^4b^4\ge2a^4b^2c^2\left(4\right)\end{cases}}\)
Cộng (2), (3), (4) vế theo vế rồi rút gọn cho 2 ta được điều phải chứng minh là đúng.
PS: Nếu nghĩ được cách khác đơn giản hơn sẽ chép lên cho b sau. Tạm cách này đã.
Ta có:
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\left(a+b\right)c=ab\Leftrightarrow ab-bc-ab=0\)
Hay \(ab-bc-ab+c^2=c^2\Leftrightarrow\left(b-c\right)\left(a-c\right)=c^2\)
Nếu \(\left(b-c;a-c\right)=d\ne1\Rightarrow c^2=d^2\left(loai\right)\)
Vậy \(\left(b-c;a-c\right)=1\Rightarrow c-b;c-a\) là 2 số chính phương
Đặt \(b-c=n^2;a-c=m^2\)
\(\Rightarrow a+b=b-c+a-c+2c=m^2+n^2+2mn=\left(m+n\right)^2\) là số chính phương
Vừa làm vừa nháp nên bạn chú ý nhé !
ít nhất 1 trong 3 số bằng 1 thì ta nghĩ đến \(\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\)
\(\left(a-1\right)\left(b-1\right)\left(c-1\right)\)
\(=\left(ab-a-b+1\right)\left(c-1\right)\)
\(=abc-ab-ac-bc+a+b+c-1\)
\(=a+b+c-ab-bc-ca\) ( 1 )
Biến đổi giả thiết:\(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow a+b+c=\frac{ab+bc+ca}{abc}=ab+bc+ca\)
Khi đó ( 1 ) = 0 => đpcm
a
\(\left(n^2-8\right)^2+36\)
\(=n^4-16n^2+64+36\)
\(=\left(n^4+20n^2+100\right)-36n^2\)
\(=\left(n^2+10\right)^2-\left(6n\right)^2\)
\(=\left(n^2-6n+10\right)\left(n^2+6n+10\right)\)
Để \(\left(n^2-8\right)^2+36\) là SNT thì \(n^2-6n+10=1\left(h\right)n^2+6n+10=1\)
Mà n là số tự nhiên nên \(n^2+6n+10>n^2-6n+10\)
\(\Rightarrow n^2-6n+10=1\Leftrightarrow n^2-6n+9=0\)
\(\Leftrightarrow\left(n-3\right)^2=0\Leftrightarrow n=3\)
Thay n=3 vào cái ban đầu ta được \(\left(n^2-8\right)^2+36=37\) ( là số nguyên tố )
b/\(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Rightarrow a+b+c=\frac{ab+bc+ca}{abc}\)
\(\Rightarrow a+b+c=ab+bc+ca\)
\(\Rightarrow a+b+c-ab-bc-ca=0\)
\(\Rightarrow abc+a+b+c-ab-bc-ca-1=0\)
\(\Rightarrow\left(a-ab\right)+\left(b-1\right)+\left(c-bc\right)+\left(abc-ac\right)=0\)
\(\Rightarrow-a\left(b-1\right)+\left(b-1\right)-c\left(b-1\right)+ac\left(b-1\right)=0\)
\(\Rightarrow\left(b-1\right)\left(-a+1-c+ac\right)=0\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\)
<=> a-1 =0 hoặc b-1 =0 hoặc c-1=0
<=> a=1 hoặc b=1 hoặc c=1
Vậy trong 3 số a,b,c có ít nhất 1 số bằng 1
Ez còn nhờ :
Để \(A=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\) nghuyên \(\Leftrightarrow\hept{\begin{cases}1⋮a\text{ };\text{ }1⋮b\text{ };\text{ }1⋮c\\1⋮ab\text{ };\text{ }1⋮bc\text{ };\text{ }1⋮ac\end{cases}}\)
\(\Rightarrow\left(a;b;c\right)\inƯ\left(1\right)=\left\{\pm1\right\}\)Mà a;b;c nguyên dương \(\Rightarrow\left(a;b;c\right)=\left(1;1;1\right)\)
Vậy \(\left(a;b;c\right)=\left(1;1;1\right)\)
Gợi ý cách làm:
Vì c nguyên tố nên \(c\in\left(2,3,5,7\right)\)
Thay c = 2 vào ta được
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{2}\) ta giả sử \(a\ge b\)
\(\Rightarrow\frac{1}{2}=\frac{1}{a}+\frac{1}{b}\le\frac{2}{b}\)
\(\Rightarrow0< b\le4\Rightarrow b\in\left(1,2,3,4\right)\)
Thế vào tìm được a. Cứ vậy làm hết bài
đúng rồi