Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P^2=\dfrac{\left(a-b\right)^2}{\left(a+b\right)^2}=\dfrac{a^2-2ab+b^2}{a^2+2ab+b^2}=\dfrac{3a^2+3b^2-6ab}{3a^2+3b^2+6ab}=\dfrac{4ab}{16ab}=\dfrac{1}{4}\Rightarrow P=\dfrac{1}{2}\)
\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)\)Mà \(ab+bc+ac=0\Rightarrow a^2+b^2+c^2=0\Rightarrow a=b=c=0\)
Vậy \(M=-2005^{2006}\)
Để \(f\left(x\right)=\left(ax+b\right)^2\)
\(\Leftrightarrow x^2-\left(2m+1\right)x+m^2+1=\left(ax+b\right)^2\)
\(\Leftrightarrow x^2-\left(2m+1\right)x+\left(m^2+1\right)=a^2x^2+2abx+b^2\)
Đồng nhất hệ số ta được :
\(\left\{{}\begin{matrix}a^2=1\\2ab=-\left(2m+1\right)\\b^2=m^2+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\pm1\\2ab=-2m-1\\b^2=m^2+1\end{matrix}\right.\)
Với \(a=1\Rightarrow\left\{{}\begin{matrix}2b=-2m-1\\b^2=m^2+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{4}\\b=-\dfrac{5}{4}\end{matrix}\right.\)
Với \(a=-1\Rightarrow\left\{{}\begin{matrix}-2b=-2m-1\\b^2=m^2+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{4}\\b=\dfrac{5}{4}\end{matrix}\right.\)
Vậy \(m=\dfrac{3}{4}\)
Câu nào biết thì mink làm, thông cảm !
Bài 1:
1) Cho \(a=1\) ta được:
\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}2x=5\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\\frac{5}{2}+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{1}{2}\end{cases}}\)
2) Cho \(a=\sqrt{3}\) ta được:
\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x\sqrt{3}-y=2\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}3x-y\sqrt{3}=2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}4x=3+2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\\frac{3+2\sqrt{3}}{4}+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\y=\frac{-2+3\sqrt{3}}{4}\end{cases}}\)
Bữa sau làm tiếp
Số hạng cuối cùng mẫu số là \(\frac{1}{\sqrt{x}-1}\) hay \(\frac{1}{\sqrt{x-1}}\) bạn?
Lời giải:
Theo định lý Be-du thì số dư của \(P(x)=ax^3+bx^2+c\) khi chia cho \(x+2\) là:
\(P(-2)=-8a+4b+c=0\) (1)
Gọi đa thức thương khi chia $P(x)$ cho\(x^2-1\) là \(Q(x)\). Khi đó ta có:
\(ax^3+bx^2+c=(x^2-1)Q(x)+x+5\)
Thay \(x=\pm 1\) ta thu được:
\(\left\{\begin{matrix} a+b+c=0.Q(1)+6=6(2)\\ -a+b+c=0.Q(-1)+4=4(3)\end{matrix}\right.\)
Từ \((1)(2)(3)\Rightarrow \left\{\begin{matrix} a=1\\ b=1\\ c=4\end{matrix}\right.\)
Vậy \((a,b,c)=(1,1,4)\)