Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)\(=\frac{1}{ab+a+1}+\frac{a}{a\left(bc+b+1\right)}+\frac{abc}{ca+c+abc}\)
\(=\frac{1}{ab+a+1}+\frac{a}{1+ab+a}+\frac{ab}{a+1+ab}=1\)
Theo bài ra ta có: a.b.c = 1
=> a=1;b=1;c=1
Ta có: A = \(\frac{1}{a.b+a+1}\)\(+\frac{1}{b.c+b+1}+\frac{1}{c.a+c+1}\)\(=\frac{1}{1.1+1+1}+\frac{1}{1.1+1+1}\)\(+\frac{1}{1.1+1+1}\)
\(=\frac{1}{1+1+1}+\frac{1}{1+1+1}+\frac{1}{1+1+1}\)\(=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=\frac{3}{3}=1\)
Vậy A = 1
Cho các số a,b,c thỏa mã a.b.c = 1
Tính A = \(\frac{1}{a.b+a+1}+\frac{1}{b.c+b+1}+\frac{1}{c.a+c+1}\)
\(A=\)\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)
\(=\frac{c}{\left(ab+a+1\right)c}+\frac{ac}{\left(bc+b+1\right).ac}+\frac{1}{ca+c+1}\)
\(=\frac{c}{abc+ac+c}+\frac{ac}{abc^2+abc+ac}+\frac{1}{ca+c+1}\)
\(=\frac{c}{1+ac+c}+\frac{ac}{c+1+ac}+\frac{1}{ca+c+1}\)
\(=\frac{c+ac+1}{1+ac+c}=1\)
Bài 1:
\(S=\frac{abc}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\\ =\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{b+1+bc}=\frac{bc+b+1}{bc+b+1}=1\)
Bài 2:
\(\frac{a}{5}+1=\frac{1}{b-1}\\ \Rightarrow \frac{a+5}{5}=\frac{1}{b-1}\\ \Rightarrow (a+5)(b-1)=5\)
Vì $a,b$ là số tự nhiên nên $a+5, b-1$ là số nguyên. Mà tích của chúng bằng 5 nên $a+5$ là ước của $5$ (1)
Vì $a$ là số tự nhiên nên $a+5$ là số tự nhiên và $a+5\geq 5$ (2)
Từ $(1); (2)\Rightarrow a+5=5$
$\Rightarrow a=0$
$b-1=\frac{5}{5}=1\Rightarrow b=2$
Bài 1:suy ra 5*(44-x)=3*(x-12)
220-5x=3x-36
-5x-3x=-36-220
-8x =-256
x=32
Bài 2 :Đặt a/3=b/4=k
suy ra a=3k ; b=4k
Ta có a*b=48
suy ra 3k*4k=48
12k =48
k=4
suy ra a=3*4=12
b=4*4 =16
Bài 3: áp dụng tính chất dãy số bằng nhau ta được
a+b+c+d/3+5+7+9 = 12/24=0,5
suy ra a=1,5; b=2,5; c=3,5; d=4,
1. Ta có:\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{2}=5\\\frac{b}{3}=5\\\frac{c}{4}=5\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=10\\b=15\\c=20\end{cases}}\)
2. Ta có:\(\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{10}=\frac{b}{15}\)
\(\frac{b}{5}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{-49}{7}=-7\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{10}=-7\\\frac{b}{15}=-7\\\frac{c}{12}=-7\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=-70\\b=-105\\c=-84\end{cases}}\)
1. Ta có:a2 =b3 =c4 =a+2b−3c2+6−12 =−20−4 =5
a2 =5 |
b3 =5 |
c4 =5 |
a=10 |
b=15 |
c=20 |
2. Ta có:a2 =b3 ⇒a10 =b15
b5 =c4 ⇒b15 =c12
⇒a10 =b15 =c12 =a−b+c10−15+12 =−497 =−7
a10 =−7 |
b15 =−7 |
c12 =−7 |
a=−70 |
b=−105 |
c=−84 |
ab = 3/5 (1)
bc = 4/5 (2)
ca = 3/4 (3)
lấy (1)*(2)*(3): a²b²c² = (3/5)(4/5)(3/4) = 9/25 => abc = ±3/5
*abc = -3/5 (4)
lần lượt lấy (4) chia cho (1), (2), (3) ta có:
c = -1; a = -3/4; b = -4/5
*abc = 3/5 (5)
lấy (5) chia cho (1), (2), (3)
c = 1, a = 3/4, b = 4/5
\(a\times b=\frac{3}{5}\)
\(b\times c=\frac{4}{5}\)
\(c\times a=\frac{3}{4}\)
\(a\times b\times b\times c\times c\times a=\frac{3}{4}\times\frac{3}{5}\times\frac{4}{5}\)
\(a^2\times b^2\times c^2=\frac{9}{25}\)
\(\left(a\times b\times c\right)^2=\left(\pm\frac{3}{5}\right)^2\)
\(a\times b\times c=\pm\frac{3}{5}\)
TH1:
\(a\times b\times c=\frac{3}{5}\)
TH2:
\(a\times b\times c=-\frac{3}{5}\)
Vậy ........
Đến đây bn tự tính theo từng trường hợp nhé ^^