Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mik chỉ bik 1 cách thôi xl nha
Giải
ta có:45=9.5
mà (5,9)=1 nên để 75x3y chia hết cho 45=>75x3y chia hết cho 9 và 5
75x3y chia hết cho 5=>y=0 hoặc y=5
với y=0 thì 75x3y chia hết cho 9=>7+5+x+0 chia hết cho 9
=>13+x chia hết cho 9
=>x=5
với y=5 thì 75x35 chia hết cho 9 =>7+5+x+3+5 chia hết cho 9
=>20+x chia hết cho 9
=>x=7
vậy các cặp số tự nhiên (x,y) thỏa mãn bài toán là:(0;5);(5;7)
vì số tận cùng là 0 hoặc 5 nên 3 số đó là C={505;510;515}
Tham khảo nhé bn
a) A = {0; 3; 6; 9; 12; 15};
Ta thấy các số 0; 3; 6; 9; 12; 15 là các số tự nhiên chia hết cho 3 và nhỏ hơn 16 nên ta viết tập hợp A bằng cách chỉ ra tính chất đặc trưng là:
A = {x | x là số tự nhiên chia hết cho 3, x < 16}.
b) B = {5; 10; 15; 20; 25; 30};
Ta thấy các số 5; 10; 15; 20; 25; 30 là các số tự nhiên chia hết cho 5, lớn hơn 0 và nhỏ hơn 31 (hoặc ta có thể viết nhỏ hơn 32; …; 35).
Vậy ta có thể viết tập hợp B bằng các cách sau:
Cách 1:
B = {x | x là các số tự nhiên chia hết cho 5, 0 < x < 31}.
Cách 2:
B = {x | x là các số tự nhiên chia hết cho 5, 0 < x < 35}…
c) C = {10; 20; 30; 40; 50; 60; 70; 80; 90};
Ta thấy các số 10; 20; 30; 40; 50; 60; 70; 80; 90 là các số tự nhiên chia hết cho 10, lớn hơn 0 và nhỏ hơn 100 (hoặc ta có thể viết nhỏ hơn 91; …; 99).
Vậy ta có thể viết tập hợp C bằng các cách sau:
Cách 1:
C = {x | x là các số tự nhiên chia hết cho 10, 0 < x < 91}.
Cách 2:
adC = {x | x là các số tự nhiên chia hết cho 10, 0 < x < 100}…
d) D = {1; 5; 9; 13; 17}
Ta thấy các số 1; 5; 9; 13; 17 là các số tự nhiên thỏa mãn số sau hơn số trước 4 đơn vị (hay còn gọi là hơn kém nhau 4 đơn vị) bắt đầu từ 1 và nhỏ hơn 18.
Do đó ta viết tập hợp D là:
D = {x | x là các số tự nhiên hơn kém nhau 4 đơn vị bắt đầu từ 1, x < 18}.
a)
3n+1 chia hết cho 11-n=> -3(-n+11)+34 chia hết cho 11-n
Mà -3(-n+11) chia hết cho 11-n=>34 chia hết cho 11-n=>11-n thuộc U(34)={1,2,17,34,-1,-2,-17,-34} mà n thuộc N =>n thuộc {10,9,12,13,28,45}
aba chia hết cho 33 => aba chia hết cho 11 và 3.
aba chia hết cho 11 => a+a-b=2a-b chia hết cho 11.
và aba chia hết cho 3 => a+a+b=2a+b chia hết cho 3.
xét a từ 1
a=1 => 2a-b=2-b chia hết cho 11 =>b=2; 2a+b=4 không chia hết cho 3 (loại).
a=2 => 2a-b=4-b chia hết cho 11 =>b=4; 2a+b=8 không chia hết cho 3 (loại).
a=3 => 2a-b=6-b chia hết cho 11 =>b=6; 2a+b=12 Chia hết cho 3 (nhận) aba=363.
a=4 => 2a-b=8-b chia hết cho 11 =>b=8; 2a+b=16 không chia hết cho 3 (loại).
a=5 => 2a-b=10-b chia hết cho 11 =>không tồn tại b;
a=6 => 2a-b=12-b chia hết cho 11 =>b=1; 2a+b=13 không chia hết cho 3 (loại).
a=7 => 2a-b=14-b chia hết cho 11 =>b=3; 2a+b=17 không chia hết cho 3 (loại).
a=8 => 2a-b=16-b chia hết cho 11 =>b=5; 2a+b=21 Chia hết cho 3 (nhận) aba=858.
a=9 => 2a-b=18-b chia hết cho 11 =>b=7; 2a+b=25 không chia hết cho 3 (loại).
Vậy có 2 số: là 363 và 858.