K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2019

x^2+5 x^4+2x^3+10x+a x^2+2x-5 x^4+5x^2 2x^3-5x^2+10x+a 2x^3 +10x -5x^2+a -5x^2-25 a+25

Để  x4+2x3+10x+a chia hết cho đa thức x2+5 thì

\(a+25=0\Leftrightarrow a=-25\)

21 tháng 7 2015

Vì 2.3 - 3.2 + x + a chia hết cho x + 2 

=> 2.3 - 3.2 + x+ a = ( x + 2).q

thay x = -2 vào ta có:

       2.3 - 3.2 - 2 + a = ( -2 + 2 ).q

=> 8 - 9 - 2 +a   = 0 

=> -19  +a = 0 

=> a = 19 

Vậy a = 19

1 tháng 11 2017

2x^3-3x^2+x+a=2x^2(x+2)-7x^2+x+a=2x^2(x+2)-7x(x+2)+15x+a=2x^2(x+2)-7x(x+2)+15(x+2)+a-30=(x+2)(2x^2-7x+15)+a-30

vì (x+2)(2x^2-7x+15) chia hết x+2

suy ra a-30=0

suy ra a=30

14 tháng 12 2017

Bài làm tg tự

22 tháng 12 2020

a) \(\left(x^4-x^3+6x^2-x+a\right)⋮\left(x^2-x+5\right)=x^2+1\) (dư a - 5)

Để đa thức chia hết \(\Leftrightarrow a-5=0\Leftrightarrow a=5\)

b) \(\left(2x^3-3x^2+x+a\right)⋮\left(x+2\right)=2x^2-7x+15\) (dư a - 30)

Để đa thức chia hết \(\Leftrightarrow a-30=0\Leftrightarrow a=30\)

3 tháng 11 2019

Đa thức \(x^2-1\)có nghiệm \(\Leftrightarrow x^2-1=0\)

\(\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\)

-1 và 1 là hai nghiệm của đa thức \(x^2-1\)

Để đa thức \(2x^3-x^2+ax+b\)chia hết cho đa thức \(x^2-1\)thì -1 và 1 cũng là hai nghiệm của đa thức \(2x^3-x^2+ax+b\)

Nếu x = -1 thì \(-2-1-a+b=0\Leftrightarrow a-b=-3\)(1)

Nếu x = 1 thì \(2-1+a+b=0\Leftrightarrow a+b=-1\)(2)

Từ (1) và (2) suy ra \(\hept{\begin{cases}a=\frac{-3-1}{2}=-2\\b=\frac{-1+3}{2}=1\end{cases}}\)

Vậy a = -2, b = 1

7 tháng 11 2019

\(x^2-2x+1=\left(x-1\right)^2\)

Áp dụng định lý Bezout:

Đa thức f(x) = x- 3x + a chia hết cho đa thức x- 2x + 1

\(\Leftrightarrow f\left(1\right)=1-3+a=0\)

\(\Leftrightarrow a=2\)

Vậy a = 2 thì đa thức x- 3x + a chia hết cho đa thức x- 2x + 1

18 tháng 7 2018

Chỉ cần chia ra và có kết quả cuối cùng thì tính như bình thường thôi bạn.