Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 3 nè : ta có a=42q+r=2*3*7q+r(q,r thuộc N,0<r<42 Vì a là SNT nên r ko chia hết cho 2,3,7 tìm các hợp số <42 loại chia hết cho 3,7 còn 25 r=25
\(Giai\)
\(Goi:d=\left(n+1,n-3\right).\)
\(taco:\hept{\begin{cases}n+1⋮d\\n-3⋮d\end{cases}}\Rightarrow\left(n+1\right)-\left(n-3\right)⋮d\Leftrightarrow4⋮d\Rightarrow d\in\left\{1;2;4\right\}\)
\(\left(n+1,n-3\right)=1\Leftrightarrow d=1\Leftrightarrow\orbr{\begin{cases}n+1=2k+1\left(k\inℕ\right)\\n-3=2k+1\left(k\inℕ\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}n=2k\\n=2k+4\end{cases}}}\left(n,chẵn\right)\)
\(Vậy:với,n,chẵn,thì,:\left(n+1,n-3\right)=1\)
♣ Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³
♣ Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 )
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ
=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 )
<=> 2p + 1 = 8k³ + 12k² + 6k + 1
<=> p = k(4k² + 6k + 3)
=> p chia hết cho k
=> k là ước số của số nguyên tố p.
Do p là số nguyên tố nên k = 1 hoặc k = p
♫ Khi k = 1
=> p = (4.1² + 6.1 + 3) = 13 (nhận)
♫ Khi k = p
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1
Do p > 2 => (4p² + 6p + 3) > 2 > 1
=> không có giá trị p nào thỏa.
Đáp số : p = 13
dau la toan bat dang thuc