\(5^{2026}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2016

ta có các qui luật như sau :

51 = 5                   53 = 125

52 = 5                   54 = 625

............................................

như thế ta có các chữ số tận cùng là 5 .

=> 52026 có chữ số tận cùng là 5

1 tháng 12 2016

Sáu chữ số tận cùng cơ

30 tháng 11 2016

\(chịu\)\(thui\)\(@@@@@@@@@@@@@@@@@@@@@@@@@@\)

1 tháng 12 2016

1;0;8;8;6;4

18 tháng 6 2019

a,Ý 1:\(14^{14^{14}}=7^{14^{14}}.2^{14^{14}}\)

Dễ chứng minh \(14^{14}⋮4\) và \(14^{14}\) chia 20 dư 16 nên đặt \(14^{14}=4k=20l+16\)

Ta có:\(14^{14^{14}}=7^{4k}.2^{20l+16}=\left(7^4\right)^k.\left(2^{20}\right)^l.2^{16}\)\(=2401^k.1048576^l.65536\)

\(\equiv\left(01\right)^k.\left(76\right)^l.36=01.76.36=2736\equiv36\)(mod 100)

Ý 2:Để ý:\(5^7\equiv5\)(mod 180).Từ đó chứng minh được :\(5^{121}=5^{98}.5^{23}\equiv25.5^5=1625\equiv5\)(mod 180)
Đặt:\(5^{121}=180m+5\).Khi đó:\(17^{5^{121}}=17^{180m+5}=\left(17^{180}\right)^m.17^5\equiv\left(01\right)^m.57=01.57=57\)(mod 100)
Có được :\(17^{180}\equiv01\)(mod 100) là do:\(17^3\equiv13\)(mod 100)  mà \(13^6\equiv9\) nên \(17^{18}\equiv13^6\equiv9\)(mod 100)
Lại có:\(9^{10}\equiv01\)(mod 100) \(\Rightarrow17^{180}\equiv9^{10}\equiv01\)(mod 100)

18 tháng 6 2019

b,Ta có:\(2^{20}=16^5\equiv76\)(mod 100) nên \(2^{2000}=\left(2^{20}\right)^{100}\equiv76^{100}\equiv76\)(mod 100)
\(\Rightarrow2^{2006}=2^{2000}.2^6\equiv76.64=4864\equiv64\)(mod 100)
Đặt \(2^{2006}=100t+64\) ta được \(3^{2^{2006}}=3^{100t+64}=\left(3^{100}\right)^t.3^{64}\equiv\left(001\right)^t.3^{64}=3^{64}\)(mod 1000)
Lại có:\(3^{10}\equiv49\)(mod 1000)\(\Rightarrow3^{60}=\left(3^{10}\right)^6\equiv49^6\equiv201\)(mod 1000)
\(\Rightarrow3^{64}=3^{60}.81\equiv81.201=16281\equiv281\)( mod 1000)

13 tháng 1 2017

Ta có : 20172018 = ( 20172 )1009 = ( .....9 )1009 

Vì ( .....9 )2n+1 có chữ số tận cùng là 9 => ( ......9 )1009 có chữ số tận cùng là 9

=> 20172018 có chữ số tận cùng là 9

17 tháng 2 2022

hề hề hề

20 tháng 6 2016

Ta có:

      \(1=4.0+1\)

 \(2^1=2^{4.0+1}=2^0.2^1=2\)

      \(5=4.1+1\)

\(3^5=3^{4.1+1}=3^4.3=81.3=\left(...3\right)\)

\(\Rightarrow b^{4.k+1}\)sẽ có tận cùng bằng tận cùng của b\(\left(k\in N\right)\)

Vậy chữ số tận cùng của S chình bằng chữ số tận cùng của :

B=2+3+4+5+...+2014

Số số hạng của B là:

         (2014-2):1+1=2013(số hạng)

Tổng B là :

         \(\left(2014+2\right).2013:2=2029104\)

Vậy tổng S có tận cùng là 4

                                  Đáp số: 4

20 tháng 6 2016

lớp 8 thì mình chịu