Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
(1 - 2 + 3 - 4+ ... - 96 + 97 - 98 + 99).\(x\) = 2000
Đặt A = 1 - 2 + 3 - 4 +...- 96 + 97 - 98 + 99
Xét dãy số: 1; 2; 3; 4;...;96; 97; 98; 99
Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1
Số số hạng của dãy số trên là: (99 - 1): 1 + = 99
Vì 99 : 2 = 49 dư 1
Nhóm 2 số hạng liên tiếp của A thành một nhóm thì A là tổng của 49 nhóm và 99
A = 1 - 2 + 3 - 4 + ... - 96 + 97 - 98 + 99
A = (1- 2) + (3 - 4)+ ...+ (97 - 98) + 99
A = - 1 + (-1) + (-1) +...+ (-1) + 99
A = -1.49 + 99
A = -49 + 99
A = 50 Thay A =
Vậy 50.\(x\) = 2000
\(x\) = 2000 : 50
\(x\) = 40
2, n và n + 1
Gọi ước chung lớn nhất của n và n + 1 là d
Ta có: n ⋮ d; n + 1 ⋮ d
⇒ n + 1 - n ⋮ d
1 ⋮ d
d = 1
Vậy ƯCLN(n +1; n) = 1 Hay n + 1; n là hai số nguyên tố cùng nhau (đpcm)
\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
Mà \(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}=1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=2-\dfrac{1}{100}< 2\)
\(\Rightarrow\) \(S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
Vậy \(S< 2\left(đpcm\right).\)
Câu 1 :
Ta có :
\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+..........+\dfrac{1}{100^2}\)
Ta thấy :
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
........................
\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
\(\Leftrightarrow S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+.......+\dfrac{1}{99.100}\)
\(\Leftrightarrow S< 1+1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Leftrightarrow S< 1+1-\dfrac{1}{100}\)
\(\Leftrightarrow S< 2+\dfrac{1}{100}< 2\)
\(\Leftrightarrow S< 2\rightarrowđpcm\)
S1 = \(\frac{N.\left(N+1\right)}{2}\)
S2 = 2S1 = N.(N+1)
S3 = \(\frac{\left(2n-1\right).2n.\left(2n+1\right)}{6}\)
Bài 1:a) |x - 3| = 2x + 4
=> \(\orbr{\begin{cases}x-3=2x+4\\x-3=-2x-4\end{cases}}\)
=> \(\orbr{\begin{cases}x-2x=4+3\\x+2x=-4+3\end{cases}}\)
=> \(\orbr{\begin{cases}-x=7\\3x=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=-7\\x=-\frac{1}{3}\end{cases}}\)
Vậy ...
b) Để M có giá trị nguyên thì 2n - 7 \(⋮\)n - 5
<=> 2(n - 5) + 3 \(⋮\)n - 5
<=> 3 \(⋮\)n - 5
<=> n - 5 \(\in\)Ư(3) = {1; -1; 3; -3}
Lập bảng :
n - 5 | 1 | -1 | 3 | -3 |
n | 6 | 4 | 8 | 2 |
Vậy ...
5:
a: \(3^{2n}=\left(3^2\right)^n=9^n\)
\(\left(2^{3n}\right)=\left(2^3\right)^n=8^n\)
=>\(3^{2n}>2^{3n}\)
b: \(199^{20}=\left(199^4\right)^5=1568239201^5\)
\(2003^{15}=\left(2003^3\right)^5=8036054027^5\)
mà \(1568239201< 8036054027\)
nên \(199^{20}< 2003^{15}\)
4: \(100< 5^{2x-1}< 5^6\)
mà \(25< 100< 125\)
nên \(125< 5^{2x-1}< 5^6\)
=>3<2x-1<6
=>4<2x<7
=>2<x<7/2
mà x nguyên
nên x=3