K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b: Ta có: \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)

\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{2}{x+\sqrt{x}+1}\)

c: Ta có: \(x+\sqrt{x}+1>0\forall x\) thỏa mãn ĐKXĐ

\(\Leftrightarrow\dfrac{2}{x+\sqrt{x}+1}>0\forall x\)

31 tháng 10 2021

\(a,A=\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{x-2-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\\ A=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\\ A=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

AH
Akai Haruma
Giáo viên
22 tháng 6 2023

Lời giải:

$\frac{3}{2}B=\frac{3\sqrt{x}}{x+\sqrt{x}+1}$
$\Rightarrow 1-\frac{3}{2}B=1-\frac{3\sqrt{x}}{x+\sqrt{x}+1}=\frac{x-2\sqrt{x}+1}{x+\sqrt{x}+1}=\frac{(\sqrt{x}-1)^2}{x+\sqrt{x}+1}\geq 0$ với mọi $x\geq 0$

$\Rightarrow \frac{3}{2}B\leq 1$

$\Rightarrow B\leq \frac{2}{3}$

Vậy $B_{\max}=\frac{2}{3}$ khi $\sqrt{x}-1=0\Leftrightarrow x=1$

NV
22 tháng 7 2021

\(A=\left(\dfrac{2x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}+1}-\sqrt{x}\right)\)

\(=\left(\dfrac{2x+\sqrt{x}-x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(x-\sqrt{x}+1-\sqrt{x}\right)\)

\(=\left(\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(\sqrt{x}-1\right)^2\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)

b. Đặt \(B=A-2x\)

\(B=\sqrt{x}-1-2x=-2\left(\sqrt{x}-\dfrac{1}{4}\right)^2-\dfrac{7}{8}\le-\dfrac{7}{8}\)

\(B_{max}=-\dfrac{7}{8}\) khi \(\sqrt{x}-\dfrac{1}{4}=0\Leftrightarrow x=\dfrac{1}{16}\)

AH
Akai Haruma
Giáo viên
22 tháng 6 2023

Cách 1: 

Áp dụng BĐT Cô-si:

$x+1\geq 2\sqrt{x}\Rightarrow A=\frac{3\sqrt{x}}{x+1}\leq \frac{3\sqrt{x}}{2\sqrt{x}}=\frac{3}{2}$

Vậy $A_{\max}=\frac{3}{2}$

Giá trị này đạt tại $x=1$

AH
Akai Haruma
Giáo viên
22 tháng 6 2023

Cách 2:

$\frac{2}{3}A=\frac{2\sqrt{x}}{x+1}$

$\Rightarrow 1-\frac{2}{3}A=1-\frac{2\sqrt{x}}{x+1}=\frac{x-2\sqrt{x}+1}{x+1}=\frac{(\sqrt{x}-1)^2}{x+1}\geq 0$ với mọi $x\geq 0$

$\Rightarrow \frac{2}{3}A\leq 1$

$\Rightarrow A\leq \frac{3}{2}$

Vậy $A_{\max}=\frac{3}{2}$. Giá trị này đạt tại $\sqrt{x}-1=0\Leftrightarrow x=1$

1: ĐKXĐ: a>=0; a<>1

Đặt \(A=\left(\dfrac{a+2\sqrt{a}}{\sqrt{a}+2}-1\right):\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}+1\right)\)

\(=\left(\dfrac{\sqrt{a}\left(\sqrt{a}+2\right)}{\sqrt{a}+2}-1\right):\left(\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}+1\right)\)

\(=\dfrac{\left(\sqrt{a}-1\right)}{\sqrt{a}+1}\)

2: Để A là số nguyên thì \(\sqrt{a}-1⋮\sqrt{a}+1\)

=>\(\sqrt{a}+1-2⋮\sqrt{a}+1\)

=>\(-2⋮\sqrt{a}+1\)

=>\(\sqrt{a}+1\in\left\{1;-1;2;-2\right\}\)

=>\(\sqrt{a}\in\left\{0;-2;1;-3\right\}\)

=>\(\sqrt{a}\in\left\{0;1\right\}\)

=>\(a\in\left\{0;1\right\}\)

Kết hợp ĐKXĐ, ta được: a=0

13 tháng 11 2021

\(a,P=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\\ P=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\\ P=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}=\dfrac{-3}{\sqrt{x}+3}\\ b,P=\dfrac{-3}{\sqrt{x}+3}\ge\dfrac{-3}{0+3}=-1\\ P_{min}=-1\Leftrightarrow x=0\)

11 tháng 2 2022

Ta có \(\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}=2\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{\sqrt{ab}}=4\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=4-\dfrac{2}{\sqrt{ab}}\)

Khi đó P = \(\dfrac{1}{\sqrt{ab}}\left(4-\dfrac{2}{\sqrt{ab}}\right)=-2\left(\dfrac{1}{\sqrt{ab}}-1\right)^2+2\le2\)

Dấu "=" khi a = b = 1 

29 tháng 12 2023

a) ĐKXĐ: \(x>0;x\ne4\)

\(Q=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\right):\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{x}+1}\right)\)

\(=\left[\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\right]:\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-1-\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}:\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\cdot\sqrt{x}\left(\sqrt{x}+1\right)\)

\(=\dfrac{3\sqrt{x}}{\sqrt{x}-2}\)

b) Để biểu thức \(Q\) có giá trị âm thì \(\dfrac{3\sqrt{x}}{\sqrt{x}-2}< 0\)

\(\Rightarrow\sqrt{x}-2< 0\) (vì \(3\sqrt{x}>0\forall x>0;x\ne4\))

\(\Leftrightarrow\sqrt{x}< 2\Leftrightarrow0\le x< 4\) 

Kết hợp với điều kiện xác định của \(x\), ta được: \(0< x< 4\)

\(\text{#}\mathit{Toru}\)

29 tháng 12 2023

đk là 0<x<4 thì ở kết quả <=> em thêm không âm ở trước nữa hoặc => x<4 nha.