Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để (d) đi qua điểm A(1;3) thì \(3=2m.1+5\Rightarrow2m=-2\Rightarrow m=-1\)
b) Xét phương trình hoành độ giao điểm: \(x^2=2mx+5\)
\(\Rightarrow x^2-2mx-5=0\left(I\right)\)
Ta có \(\Delta'=m^2+5>0,\forall m\) nên PT (I) luôn có 2 nghiệm phân biệt \(x_1,x_2\) với mọi \(m\)
Vậy (d) luôn cắt (P) tại hai điểm phân biệt.
c) Áp dụng hệ thức Vi-et ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-5\end{matrix}\right.\)
Để \(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)
\(\Leftrightarrow4m^2-2.\left(-5\right)=4\Leftrightarrow4m^2=-6\) (Vô lý)
Vậy không có m thỏa mãn ycbt.
PTHĐGĐ là:
x^2-(m-2)x-3=0
a*c<0
=>(P) luôn cắt (d) tại hai điểm pb
Theo đề, ta có: 3x2=-x1 và x1+x2=m-2
=>x1+3x2=0 và x1+x2=m-2
=>2x2=-m+2 và 3x2=-x1
=>x2=-1/2m+1 và x1=-3x2=3/2m-3
x1x2=-3
=>-1/2(m-2)*3/2(m-2)=-3
=>3/4(m-2)^2=3
=>(m-2)^2=4
=>m=4 hoặc m=0
Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-\left(m-2\right)x-3=0\)
\(\Delta=\left(m-2\right)^2-4\left(-3\right)=\left(m-2\right)^2+12>0\)
Vậy (P) cắt (d) tại 2 điểm pb
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m-2\left(1\right)\\x_1x_2=-3\left(2\right)\end{matrix}\right.\)
Vì \(x_1x_2=-3< 0\)nên pt có 2 nghiệm trái dấu
đk : \(\left\{{}\begin{matrix}x_1< 0\\x_2>0\end{matrix}\right.\)
\(-x_1=3x_2\Leftrightarrow x_1+3x_2=0\)(3)
Từ (1) ; (3) \(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1+3x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_2=-\left(m-2\right)\\x_1=m-2-x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{-\left(m-2\right)}{2}\\x_1=\dfrac{2m-4+m-2}{2}=\dfrac{3m-6}{2}\end{matrix}\right.\)
Thay vào (2) ta được \(\dfrac{-3\left(m-2\right)^2}{4}=-3\Leftrightarrow\left(m-2\right)^2=4\Leftrightarrow\left[{}\begin{matrix}m=4\\m=0\end{matrix}\right.\)
1: PTHĐGĐ là:
x^2-x-m+1=0(1)
Δ=(-1)^2-4(-m+1)=1+4m-4=4m-3
Để (P) cắt (d) tại hai điểm phân biệt thì 4m-3>0
=>m>3/4
Để (1) có hai nghiệm dương phân biệt thì m>3/4 và 1>0 và -m+1>0
=>m>3/4 và -m>-1
=>3/4<m<1
a: Phương trình hoành độ giao điểm là: \(x^2-mx+m-1=0\)
\(\Delta=\left(-m\right)^2-4\cdot\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\)
Để (P) cắt (d) tại hai điểm phân biệt thì m-2<>0
hay m<>2
b: \(\left|x_A-x_B\right|< 3\)
\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}< 3\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2< 9\)
\(\Leftrightarrow m^2-4\left(m-1\right)< 9\)
\(\Leftrightarrow\left(m-2\right)^2-3< 0\)
=>(m+1)(m-5)<0
=>-1<m<5