K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2023

1001/1000 và 2020/2019 đều lớn hơn 1

7/8 và 2020/2021 đều bé hơn 1

1 - 7/8 = 1/8 > 1/2021 = 1 - 2020/2021 => 7/8 < 2020/2021

=> 7/8 nhỏ nhất

Vậy 7/8 là phân số nhỏ nhất

a, \(\frac{15}{106}\)và \(\frac{21}{133}\)

          Ta có:

\(\frac{15}{106}< \frac{15}{100}=\frac{3}{20}=\frac{21}{140}< \frac{21}{133}\)

\(\Rightarrow\frac{15}{106}< \frac{21}{133}\)

             Vậy ........

b, \(\frac{31}{100}\)và \(\frac{89}{150}\)

       Ta có:

\(\frac{31}{100}< \frac{31}{93}=\frac{1}{3}=\frac{50}{150}< \frac{89}{150}\)

\(\Rightarrow\frac{31}{100}< \frac{89}{150}\)

        Vậy........

c, \(\frac{2020}{2019}\)và \(\frac{2021}{2020}\)

           Ta có:

\(\frac{2020}{2019}-1=\frac{1}{2019}\)     ;

\(\frac{2021}{2020}-1=\frac{1}{2020}\)

    Vì \(\frac{1}{2019}>\frac{1}{2020}\)

               \(\Rightarrow\frac{2020}{2019}-1>\frac{2021}{2020}-1\)  

              \(\Rightarrow\frac{2020}{2019}>\frac{2021}{2020}\)

 Vậy .........

d, n+2019/n+2021 và n+2020/n+2022

Câu d bn tự lm nhé

            

10 tháng 8 2019

Cảm ơn bạn nhiều lắm! THANK YOU VERY MUCH!!!!!!!!!

14 tháng 3 2022

2020/2021 < 1 < 2021/2020 

Suy ra 2020/2021 < 2021/2020 

 

13 tháng 2 2020

2019 / 2020 và 2020 / 2021

2019 / 2020  <  2020 / 2021

13 tháng 2 2020

\(\frac{2019}{2020}=1-\frac{1}{2020}\)

\(\frac{2020}{2021}=1-\frac{1}{2021}\)

Vì \(\frac{1}{2020}>\frac{1}{2021}\Rightarrow1-\frac{1}{2020}< 1-\frac{1}{2021}\Rightarrow\frac{2019}{2020}< \frac{2020}{2021}\)

Chúc bạn học tốt ^^!!!

14 tháng 7 2023

\(S=1+2-3-4+5+6-7-8+9-10-...+2018-2019-2020-2021\)

\(S=1+\left(2-3\right)-4+5+\left(6-7\right)-8+9-10-...+\left(2018-2019\right)-2020-2021\)

\(S=1-1+1-1+...-1-2020-2021=-1-2020-2021=-4042\)

b) Tích của số chia và thương là :

\(89-12=77\)=7.11

⇒ Số chia là 11; thương là 7

 

14 tháng 7 2023

cộng 2021 nha bn

 

12 tháng 6 2020

Đặt A = \(\frac{2019^{2019}+1}{2019^{2020}+1}\)

=> \(2019A=\frac{2019^{2020}+2019}{2019^{2020}+1}=1+\frac{2018}{2019^{2020}+1}\)

Đặt B = \(\frac{2019^{2020}+1}{2019^{2021}+1}\)

=> \(2019B=\frac{2019^{2021}+2019}{2019^{2021}+1}=1+\frac{2018}{2019^{2021}+1}\)

Vì \(\frac{2018}{2019^{2020}+1}>\frac{2018}{2019^{2021}+1}\Rightarrow1+\frac{2018}{2019^{2020}+1}>1+\frac{2018}{2019^{2021}+1}\Rightarrow10A>10B\Rightarrow A>B\)

28 tháng 3 2021

ta có :\(E=\frac{2019^{2019}+1}{2019^{2020}+1}\Leftrightarrow2019\cdot E=\frac{2019^{2020}+2019}{2019^{2020}+1}=1+\frac{2019}{2019^{2020}+1}\)

\(F=\frac{2019^{2020}+1}{2019^{2021}+1}\Leftrightarrow2019\cdot F=\frac{2019^{2021}+2019}{2019^{2021}+1}=1+\frac{2019}{2019^{2021}+1}\)

vì \(\frac{2019}{2019^{2020}+1}>\frac{2019}{2019^{2021}+1}\) nên E>F

28 tháng 3 2021

E=2019 x 2019 x 2019 x ........ x 2019 x2019 +1 /2019 x 2019 x 2019 x.........x 2019 x 2019 + 1

E=1+1/2019+1

E=2/2020

E=1/1010

F=2019 x 2019 x 2019 x .......... x 2019 x 2019 +1 / 2019 x 2019 x 2019 x ....... x 2019 x 2019 +1

F= 1+1/2019+1

F=2/2020

F=1/1010

từ đó ta có E=F(=1/1010)

19 tháng 4 2022

a) \(2\left(\dfrac{2}{3.5}+\dfrac{4}{5.9}+...+\dfrac{16}{n\left(n+16\right)}\right)=\dfrac{16}{25}\)

\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{n}-\dfrac{1}{n+16}=\dfrac{8}{25}\)

\(\dfrac{1}{3}-\dfrac{1}{n+16}=\dfrac{8}{25}\)

\(\dfrac{n+13}{3\left(n+16\right)}=\dfrac{8}{25}\)

\(24n+384=25n+325\)

\(25n-24n=384-325\)

\(n=59\)

19 tháng 4 2022

b) Sai đề nha

\(\left\{{}\begin{matrix}\dfrac{2018}{2019}< 1\\\dfrac{2019}{2020}< 1\\\dfrac{2020}{2021}< 1\\\dfrac{2021}{2022}< 1\end{matrix}\right.\)

\(\Rightarrow\dfrac{2018}{2019}+\dfrac{2019}{2020}+\dfrac{2020}{2021}+\dfrac{2021}{2022}< 4\)