Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
0 m, n 0;
= k0
mnk = n(m+k)
mk = m+k
m(k-1)=k
m 0 k 2
TH1: k = 2 m = 2 (chọn)
TH2: k 3 m = không nguyên (loại)
m = 2
k = 2
n nguyên dương tùy ý 0
Sửa lại này, lúc nãy mình gõ trong Word rồi copy ra nên mất 1 số ký tự.
m/n khác 0 -> m; n khác 0
m/n = (m+k)/nk -> k khác 0
->mnk=n(m+k)
mk = m+k
m(k-1)=k
m khác 0 -> k lớn hơn hoặc bằng 2
Trường hợp 1: k=2 -> m=2 (chọn)
Trường hợp 2: k lớn hơn 2 -> m=k/(k-1) không nguyên (loại)
-> m=2; k=2; n nguyên dương tùy ý khác 0
a) \(\left(\frac{1}{2}\right)^m=\frac{1}{32}\)
\(=>\left(\frac{1}{2}\right)^m=\frac{1^5}{2^5}\)
\(=>\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\)
\(=>m=5\)
b) \(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)
\(=>\frac{7^3}{5^3}=\left(\frac{7}{5}\right)^n\)
\(=>\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)
\(=>n=3\)
a) \(\left(\frac{1}{2}\right)^m=\frac{1}{32}\)
\(\Rightarrow\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\)
=> m =5
b) \(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)
\(\Rightarrow\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)
=> n = 3
Mk giải theo cách mk hiểu chứ ko phải chặt chẽ lắm đâu nha !!!
Với \(k\inℕ\)thì \(k\)có thể bằng \(0\)
\(\Rightarrow kn\)có thể bằng \(0\)
\(\Rightarrow\frac{m}{kn+m}=\frac{m}{0+m}=\frac{m}{m}=1\)
\(\Rightarrow\frac{m}{kn+m}\)ko phải phân số tối giản
Vậy để \(\frac{m}{kn+m}\)là phân số tối giản thì \(k\inℕ^∗\)
Chắc vậy !!!
a. \(\left(\frac{-1}{5}\right)^n=\frac{-1}{125}\)
<=> \(\left(\frac{-1}{5}\right)^n=\left(\frac{-1}{5}\right)^3\)
<=> n = 3
b. \(\left(\frac{-2}{11}\right)^m=\frac{4}{121}\)
<=> \(\left(\frac{-2}{11}\right)^m=\left(\frac{2}{11}\right)^2\)
<=> m = 2
c. 72n + 72n+2 = 2450
<=> 72n + 72n . 72 = 2450
<=> 72n.(1+72) = 2450
<=> 72n = 72
<=> 2n = 2
<=> n = 1
Vì \(\frac{n}{m+2017}=\frac{2017}{m+n}\Rightarrow n\left(m+n\right)=2017\left(m+2017\right)\Rightarrow n=2017\)
\(\frac{m}{n+2017}=\frac{2017}{m+n}\Rightarrow2017\left(n+2017\right)=m\left(m+n\right)\Rightarrow m=2017\)
\(\Rightarrow x=\frac{2017}{2017+2017}=\frac{2017}{2017+2017}=\frac{2017}{2017+2017}=\frac{1}{2}\)
\(\frac{a}{b}=\frac{14}{22}=\frac{7}{11}\Rightarrow\frac{a}{7}=\frac{b}{11}=\frac{a+b}{7+11}=\frac{M}{18}\)
\(\frac{c}{d}=\frac{11}{13}\Rightarrow\frac{c}{11}=\frac{d}{13}=\frac{c+d}{11+13}=\frac{M}{24}\)
\(\frac{e}{f}=\frac{13}{17}\Rightarrow\frac{e}{13}=\frac{f}{17}=\frac{e+f}{13+17}=\frac{M}{30}\)
Mà M là số tự nhiên => M là bội chung nhỏ nhất của 18; 24; 30
18 = 32.2 ; 24 = 3.23 ; 30 = 2.3.5
=> BCNN (18;24;30 ) = 32.23.5 = 360
Hay M = 360
\(\frac{m}{n}=\frac{m+k}{nk}=\frac{m+k-m}{nk-n}=\frac{k}{n\left(k-1\right)}\)
\(\Leftrightarrow m=\frac{k}{k-1}\in Z\Rightarrow k=2\Rightarrow m=2\)
khi đó
\(\frac{m}{n}=\frac{2}{n};n\in Z;n\ne0\)