K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2020

Ta có : \(12a+7b=64\)

Do \(64⋮4,12a⋮4\) \(\Rightarrow7b⋮4\) mà \(\left(7,4\right)=1\)

\(\Rightarrow b⋮4\) (1)

Từ giả thiết \(\Rightarrow7b\le64\) \(\Leftrightarrow b\le9\) kết hợp với (1)

\(\Rightarrow b\in\left\{4,8\right\}\)

+) Với \(b=4\) thì : \(12a+7\cdot4=64\)

\(\Leftrightarrow12a=36\)

\(\Leftrightarrow a=3\) ( thỏa mãn )

+) Với \(b=8\) thì \(12a+7\cdot8=64\)

\(\Leftrightarrow12a=8\)

\(\Leftrightarrow a=\frac{8}{12}\) ( loại )

Vậy : \(\left(a,b\right)=\left(3,4\right)\)

26 tháng 8 2021

đó là chúng ta lấy ƯCLNx BCNN=a x b

rồi chúng ta lấy ƯCLNxƯCLN= ...

Lấy kết quả ở bên trên phép tính đầu tiên chia cho kết quả của phếp tính thứ hai

rồi lấy kết quả chia ra thành hai phần rồi nhân với ƯCLN 

Là hết bài rồi  chúc bạn học tốt 

k giùm mình nha mình có 2 sp à

Ta có: A=1/11+1/12+1/13+...+1/30

            =(1/11+1/12+1/13+..+1/20)+(1/21+1/22+1/23+...+1/30)

\(\Rightarrow\)A<(1/10+1/10+1/10+...+1/10)+(1/20+1/20+1/20+...1/20)

\(\Rightarrow\)A<(1/10)*10+(1/20)*10

\(\Rightarrow\)A<1+1/2

\(\Rightarrow\)A<3/2<11/6

2 tháng 4 2018

cam on ban rat nhieu

21 tháng 12 2015

Mặc dù không bít có hay không

7 tháng 4 2018

=>A:1/2=1/1x3+1/3x5+1/5x7+...+1/99x101

=>2a=1/2(2/1x3+2/3x5+...+2/99x101)

từ đây tự làm

1 tháng 5 2018

\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)

\(\Rightarrow2A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

\(\Rightarrow2A=\frac{1}{2}\left(1-\frac{1}{101}\right)\)

\(\Rightarrow4A=\frac{100}{101}\)

\(\Leftrightarrow A=\frac{100}{101}.\frac{1}{4}=\frac{4.25}{101.4}=25< 26\)

28 tháng 12 2015

56666+33333=38999

 555-33333= -32778

28 tháng 12 2015

sao bạn không giải bài cuối

AH
Akai Haruma
Giáo viên
9 tháng 12 2021

Lời giải:
Gọi ƯCLN(a,b) = d thì $a=dx, b=dy$ với $x,y$ là 2 số tự nhiên nguyên tố cùng nhau.

BCNN(a,b) = dxy

Theo bài ra ta có: $dxy+d=15$

$d(xy+1)=15$

$\Rightarrow 15\vdots d$ nên $d\in\left\{1;3;5;15\right\}$

Nếu $d=1$ thì $xy+1=15\Rightarrow xy=14$.

Do $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,14), (14,1), (2,7), (7,2)$

$\Rightarrow (a,b)=(1,14), (14,1), (2,7), (7,2)$

Nếu $d=3$ thì $xy=4$. Do $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,4), (4,1)$

$\Rightarrow (a,b)=(3,12), (12,3)$

Nếu $d=5$ thì $xy=2$. Do $x,y$ nguyên tố cùng nhau nên $(x,y)=(2,1), (1,2)$

$\Rightarrow (a,b)=(10,5), (5,10)$

Nếu $d=15$ thì $xy=0$ (vô lý, loại)