K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Giải
Gọi phân số dương nhỏ nhất đó là \(\frac{a}{b}\). Theo bài ra ta có :
\(\frac{a}{b}\div\frac{42}{275}=\frac{a}{b}\times\frac{275}{42}\Rightarrow275a\div42b\)
\(\frac{a}{b}\div\frac{63}{110}=\frac{a}{b}\times\frac{110}{63}\Rightarrow110a\div63b\)
Để \(\frac{a}{b}=0\) nhỏ nhất thì b phải lớn nhất và a phải bé nhất. Do đó :
\(a\inƯCLN\left(275;110\right)=55\)
\(b\in BCNN\left(42;63\right)=126\)
Vậy phân số đó là : \(\frac{126}{55}\)
Gọi phân số dương phải tìm là \(\frac{a}{b}\) (b \(\in\) N*)
Ta có: \(\frac{a}{b}:\frac{42}{275}=\frac{275a}{42b}\) là số tự nhiên <=> a \(\in\) B(42) và b \(\in\) Ư(275)
\(\frac{a}{b}:\frac{63}{110}=\frac{110a}{63b}\) là số tự nhiên <=>. a \(\in\) B(63) và b \(\in\) Ư(110)
Vì \(\frac{a}{b}\) là phân số dương nhỏ nhất nên a = BCNN(42 ; 63) = 126
và b = ƯCLN(275 ; 110) = 55
Vậy \(\frac{a}{b}=\frac{126}{55}\)