Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta đặt phân số có tử là 9: \(\frac{9}{a}\)( a \(\in\)z với a \(\ne\)0)
Theo đề bài ra:
\(\frac{-11}{13}< \frac{9}{a}< \frac{-11}{15}\)\(\Rightarrow\frac{-99}{117}< \frac{-99}{-11a}< \frac{-99}{135}\)
\(\Rightarrow\)117 < -11a < 135 \(\Rightarrow\) -11a \(\in\){ 118; 119; 120; ...; 133; 134;135}
Mà a \(\in\)Z \(\Rightarrow\)-11a \(⋮\)11 \(\Rightarrow\) -11a \(\in\) { 121; 132} \(\Rightarrow\) a \(\in\) { -11; -12}
Thay a vào phân số \(\frac{9}{a}\), ta có: \(\frac{9}{a}\in\left\{\frac{9}{-11};\frac{9}{-12}\right\}\) hay \(\frac{9}{a}\in\left\{\frac{-9}{11};\frac{-9}{12}\right\}\)
^^ Học tốt!
Gọi phân số cần tìm là \(\frac{9}{a}\left(a\ne0\right)\)
Theo đề bài ta có:\(-\frac{11}{13}< \frac{9}{a}< -\frac{11}{15}\)
\(\Leftrightarrow-\frac{99}{117}< -\frac{99}{11a}< -\frac{99}{135}\)
Tương đương với:
\(\Leftrightarrow\frac{99}{135}< \frac{99}{11a}< \frac{99}{117}\)
Do đó ta có PT cần lập:\(117< 11a< 135\)
Ta có:\(B\left(11\right):\left[0;11;22;33;.....;99;110;121;132;143;..\right]\)
Nhưng trong khoảng này số TM là:132
Vậy a là 12
Gọi phân số cần tìm là \(\frac{9}{x}\)
Ta có: \(\frac{-11}{13}< \frac{9}{x}< \frac{-11}{15}\)
Quy đồng tử, số ta có: \(\frac{-99}{177}< \frac{-99}{-11x}< \frac{-99}{135}\)
\(=>177>-11x>135\), vì x thuộc Z nên x thuộc \(\left\{-16;-15;-14;-13;-12\right\}\)
The mình phân số đó là \(\frac{-14}{15}\)
Chúc bạn học giỏi
Gọi hai p/s cần tìm là \(\frac{9}{a}\)( có dạng a thuộc x )
Ta có : \(-\frac{11}{13}< \frac{9}{a}< -\frac{11}{15}\)
\(\Leftrightarrow\frac{99}{-117}< \frac{99}{11a}< \frac{99}{-135}\)
\(\Leftrightarrow-117>11a>-135\)
\(\Leftrightarrow-10,6363636>a>-12,2727273\)
\(\Leftrightarrow a\in\left\{-11;-12\right\}\)
Vậy hai p/s cần tìm là \(-\frac{9}{11};-\frac{9}{12}\)
Gọi phân số cần tìm là \(\frac{\text{9}}{\text{a}}\)( a ∈ N* )
Theo bài ra ta có :
\(\frac{\text{-11}}{\text{13}}< \frac{\text{9}}{\text{a}}< \frac{\text{-11}}{\text{15}}\Rightarrow\frac{-\text{99}}{117}< \frac{\text{-9}\text{9}}{\text{-11}a}< \frac{-\text{99}}{\text{135}}\)
=> 117 < -11a < -135
=> -10,63636....... < a < 12,272727227............
=> a ∈ { -11 ; -12 }
Vậy ............
Giải :
Gọi p/s cần tìm là \(\frac{9}{\text{a}}\left(\text{a}\inℕ^∗\right)\)
Theo đầu bài, ta có :
\(\frac{-11}{13}< \frac{9}{\text{a}}< \frac{-11}{5}\Rightarrow\frac{-99}{117}< \frac{-99}{-11\text{a}}< \frac{-99}{135}\)
\(\Rightarrow117< -11\text{a}< -135\)
\(\Rightarrow-10,636< \text{a}< 12,272\)
\(\Rightarrow\text{a}\in\left\{-11 ;-12\right\}\)
Vậy : ...
~HT~
Gọi phân số cần tìm là \(\frac{9}{x}\)(x\(\varepsilon\)\(ℤ\);x\(\ne\)0)
Ta có \(\frac{11}{-13}\)<\(\frac{9}{x}\)<\(\frac{11}{-15}\)\(\Rightarrow\)\(\frac{99}{-117}\)<\(\frac{99}{11x}\)<\(\frac{99}{-135}\)\(\Rightarrow\)-117>11x>-135
Vì x\(\varepsilon\)\(ℤ\)nên 11x\(⋮\)11\(\Rightarrow\)11x\(\varepsilon\){-121;-132}\(\Rightarrow\)x\(\varepsilon\){-11;-12}
Vậy x\(\varepsilon\){-11;-12}