Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt 2p+1 là (1), 10p+1 là (2)
thay p=2 vào (1) => 2p+1=2.2+1=5 (số nguyên tố => thỏa mãn)
vào (2) => 10p+1=10.2+1=21 (hợp số => loại)
=> loại p=2
thay p=3 vào (1) => 2p+1=2.3+1=7 (số nguyên tố => thỏa mãn)
vào (2) 10p+1=10.3+1=31 (số nguyên tố => thỏa mãn)
=> thỏa mãn p=3
Với p là số nguyên tố lớn hơn 3 => p có dang 6k+1 và 6k-1
+ p=6k+1 thay vào (1) => 2p+1=2(6k+1)+1=12k+3 (chia hết cho 3 => hợp số => loại)
thay vào (2) =>10p+1=10(6k+1)+1=60k+11 (hợp số => loại)
+ p=6k-1 thay vào (1) => 2p+1=2(6k-1)+1=12k-3 (chia hết cho 3 => hợp số => loại)
thay vào (2) =>10p+1=10(6k-1)+1=60k-11 (hợp số => loại)
Vậy xét các trường hợp trên => p=3 thì thỏa mãn yêu cầu đề bài
a) Gọi p là số nguyên tố cần tìm.
Nếu p chia hết cho 3 và p là số nguyên tố nên p = 3.
Ta có \(2p^2+1=19\).
Vậy p = 3 (thỏa mãn).
Nếu p chia cho 3 dư 1, ta có p = 3k + 1. ( k là một số tự nhiên).
\(2p^2+1=2.\left(3k+1\right)^2+1=2\left(9k^2+6k+1\right)+1=18k^2+12k+3\)\(=3\left(6k^2+4k+1\right)\) chia hết cho 3.
Nếu p chia cho 3 dư 2, ta có p = 3k + 2, (k là một số tự nhiên).
\(2p^2+1=2\left(3k+2\right)^2+1=2\left(9k^2+12k+4\right)+1\)\(=18k^2+24k+9=3\left(6k^2+8k+3\right)\) chia hết cho 3.
vậy p = 3 là giá trị cần tìm.
b) Dễ thấy p = 2 không phải là giá trị cần tìm.
vậy p là một số nguyên tố lẻ suy ra p có tận cùng là 1, 3, 5, 7.
nếu p có tận cùng là 1 thì \(p^2\) cũng có tận cùng là 1. Suy ra \(4p^2+1\) có tận cùng là 5. (loại)
nếu p có tận cùng là 3 thì \(p^2\) có tận cùng là 9. Suy ra \(6p^2+1\) có tận cùng là 5. (loại)
nếu p có tận cùng là 5 thì p phải bằng 5. Thay vào ta thấy của \(4p^2+1\) và \(6p^2+1\) đều là các số nguyên tố.
nếu p có tận cùng là 7 thì \(p^2\) có tận cùng bằng 9. Suy ra \(6p^2+1\) có tận cùng là 5. (loại)
nếu p có tận cùng là 9 thì \(p^2\) có tận cùng bằng 1. Suy ra \(4p^2+1\) có tận cùng là 5. (loại)
vậy p = 5 là giá trị cần tìm.
vs p=2 bn tu xet nha. vs p=3k+1 thi bn cx tu xet .vs p=3k+2 thi bn cx tu xet vs p=3k ma p la snt nen p=3 khi do bn tu thay vao
bẠN tự xét p có dạng 3k,3k+1,3k+2 nha
thì sẽ được p có dạng 3k thì 2p-1 và 2p+1 là snt
mà p là snt =>p=3
p nguyên tố > 3 => 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3
từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*)
mà 2 và 3 đều là những số nguêyn tố nên từ (*) => 5p+1 chia hết cho 3
mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau
=> 5p+1 chia hết cho 2*3 = 6
Chúc bn hok tốt
+ Do p nguyên tố > 3 => p chia 3 dư 1 hoặc 2
Nếu p chia 3 dư 2 thì p = 3k + 2 (k thuộc N*) => 10p + 1 = 10.(3k + 2) + 1 = 30k + 20 + 1 = 30k + 21 chia hết cho 3, là hợp số, loại
=> p = 3k + 1
=> 5p + 1 = 5.(3k + 1) + 1 = 15k + 5 + 1 = 15k + 6 chia hết cho 3 (1)
+ Do p nguyên tố > 3 => p lẻ => 5p lẻ => 5p + 1 chẵn => 5p + 1 chia hết cho 2 (2)
Từ (1) và (2); do (3;2)=1 => 5p + 1 chia hết cho 6 (đpcm)
Bài này là chứng minh chứ ko fai tìm nha bn
a; nếu p=3 thì p+2=5 , p+4=7 đều là số nguyên tố
nếu p>3 thì p có 2 dạng : p=3k+1, p=3k+2
với p=3k+1 thì p+2=3k+1+2=3k+3 chia hết cho 3 => p+2 là hợp số
với p=3k+2 thì p+4=3k+2+4=3k+6 '''''''''''''''''''''''''''''''''''''''''''' =>p+4 là hợp số
Vậy p=3 thỏa mãn đề bài
các phần còn lại tương tự
Lời giải:
Nếu $p\vdots 3$ thì $p=3$. Khi đó $2p+1=7, 4p+1=13$ đều là số nguyên tố (thỏa mãn)
Nếu $p$ chia $3$ dư $1$. Đặt $p=3k+1$ với $k\in\mathbb{N}^*$
$\Rightarrow 2p+1=2(3k+1)+1=6k+3=3(2k+1)\vdots 3$. Mà $2p+1>3$ với mọi $p$ nên $2p+1$ không là snt (trái với giả thiết) - loại.
Nếu $p$ chia $3$ dư $2$. Đặt $p=3k+2$ với $k\in\mathbb{N}^*$
$\Rightarrow 4p+1=4(3k+2)+1=12k+9=3(4k+3)\vdots 3$. mà $4p+1>3$ với mọi $p$ nên không là snt(trái với giả thiết) - loại.
Vậy $p=3$ là đáp án duy nhất.
Bài 1:
Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố
2 + 4 = 6 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố
3 + 4 = 7 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố
Vậy p = 3k + 1 không thỏa mãn
Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p = 3k + 2 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất.
Bài 2:
Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3
p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3
Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3
Vì thế 4p + 1 phải chia hết cho 3
Mà p > 3 nên 4p + 1 > 3
=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.
b,
Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3
p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3
Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3
Vì thế 4p + 1 phải chia hết cho 3
Mà p > 3 nên 4p + 1 > 3
=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.
b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)
+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)
Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3
a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố
+) Nếu p > 1 :
p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại
p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại
Vậy p = 1
c) p = 2 => p + 10 = 12 là hợp số => loại
p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn
Nếu p > 3 , p có thể có dạng
+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1
+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2
Vậy p = 3
với p=2 ==>10p+1=10.2+1=21 chia hết cho 3 => là hợp số ==> loại p=2
với p=3 ==> 2p+1=2.3+1=7 là số nguyên tố
10p+1=10.3+1=31 là số nguyên tố
với p > 3 ==> p có dạng là p=3k+1 hoặc p =3k+2
nếu p=3k+1 thì 2p+1=2(3k+1)+1=6k+2+1=6k+3=3(2k+1) chia hết cho 3 ==> là hợp số ==> loại
nếu p=3k+2 thì 10p+1=10(3k+2)+1=30k+20+1=30k+21=3(10k+7)chia hết cho 3 là hợp số ==> loại
Vậy với p=3 thì 2p+1 và 10+1 cũng là số nguyên tố
Ta có: 5 là số nguyên tố
31 là số nguyên tố
=> 2*2+1= 5 => p=2
=> 10*3+1=31 =>p=3