Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1:p<3
+Vì p<3;mà p là số nguyên tố =>p=2.
Với p=2 ta có:p3+2=23+2=8+2=10(là hợp số nên loại)
TH2:p>3
+vì p>3 nên=>p=6k+1 hoặc p=6k+5.
Với p=6k+1 ta có :p3+2=(6k+1)3+2=6k3+1+2=6k3+3:3(là hợp số nên loại)
Với p=6k+5 ta có:p3+2=(6k+5)3+2=6k3+125+2=6k3+127(vì UCLN(6k3;127)=1=>6k3+127 là số nguyên tố nên nhận)
Vậy với p=6k+5 thì p3+2 cũng là số nguyên tố.
voi p=2 ta có 4p+1 =9 là số chính phương nên thoã mãn
voi p=3 ta có 4p+1 =13 không là số chính phương nênloại
Với p>3 thì ví p là số chính phương nên p không chia hết cho 3 suy ra p=3k+1 hoặc p=3k+2 với k thuộc N*
Nếu p=3k+1 thì 4p+1 = 12k+5 chia 3 dư 2 mà số chính pgương chia cho 3 chỉ dư 0 hoặc 1 nên loại
Nếu p=3k+2 thì 4p+1 = 12k+9 chia hết cho 3 dư 2 mà không chia hết cho 9 số chính phương chia hết cho 3 cthì phải chia hết cho 9 nên loại
Vậy p=2
Giả sử p^4+p^3+p^2+p+1 = n^2
Ta có;
+) 4n^2 ≥ 4p^4 + 4p^3 + 4p^2 + 4p+ 4 ≥ 4p^4+ 4p^3 + p^2 = ( 2p^2 + p )^2 [**]
+) 4n^2 ≤ 4p^4 + 4p^3 + 4p^2 + 4p + 4 + 5p^2 = ( 2p^2 + p + 2 )^2 [***]
Từ [**] và [***], suy ra;
4n^2 = ( 2p^2 + p + 1 )^2
Suy ra; 2n = 2p^2 + p + 1
Bình phương hai vế của đẳng thức này và so sánh với n^2, ta suy ra;
p^2 - 2p - 3 = 0
\(\Leftrightarrow\) ( p + 1 )( p - 3 ) = 0
Vì p là số nguyên tố nên phương trình trên có nghiệm p = 3 thỏa mãn.
Vậy số nguyên tố cần tìm là 3.