\(\overline{abcd}\) biết \(9\overline{abcd}=\overline{dcba}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2016

Ta nhận thấy rằng nếu a = 2 thì \(9\overline{abcd}\) là một số có nhiều hơn 4 chữ số (trái với giả thiết)

Vậy 0< a <2 , mà a là số tự nhiên nên a = 1 thỏa mãn đề bài.

Suy ra \(9\times\overline{1bcd}=\overline{dcb1}\)

Chú ý rằng 9d có tận cùng bằng 1 khi d = 9 (duy nhất)

Vậy ta có \(9\times\overline{1bc9}=\overline{9cb1}\)

Mặt khác, vế trái của đẳng thức chia hết cho 9 , vậy vế phải cũng chia hết cho 9.

Do vậy 9 + c + b + 1 = 10 + b + c chia hết cho 9

Vậy b+c chỉ thuộc các giá trị là 8 và 17 (các giá trị lớn hơn loại vì b+c < 19)

Với mỗi trường hợp ta chọn các giá trị của b từ 1 đến 9 , đồng thời ta cũng tìm được giá trị của c tương ứng.

Tới đây bạn tự làm nhé ^^

31 tháng 10 2016

Chị Ngọc chịu khó cày thiệt á nha, cày cả trưa luôn ^^

E lười thí mồ =)))

26 tháng 9 2016

\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)

\(\Rightarrow\left(x-7\right)^{x+1}.\left[1-\left(x-7\right)^{10}\right]=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x-7=0\\\left(x-7\right)^{10}=1\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x-7=0\\x-7=1\\x-7=-1\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=7\\x=8\\x=6\end{array}\right.\)

Vậy \(\left[\begin{array}{nghiempt}x=7\\x=8\\x=6\end{array}\right.\) thỏa mãn đề bài

26 tháng 9 2016

\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)

\(\Rightarrow\left(x-7\right)^{x+1}.\left[1-\left(x-7\right)^{x+10}\right]=0\)

\(\Rightarrow x-7=0\) hoặc \(1-\left(x-7\right)^{10}=0\)

+) \(x-7=0\Rightarrow x=7\)

+) \(1-\left(x-7\right)^{10}=0\)

\(\Rightarrow x-7=\pm1\)

\(x-7=1\Rightarrow x=8\)

\(x-7=-1\Rightarrow x=6\)

Vậy \(x\in\left\{7;8;6\right\}\)

9 tháng 10 2016

a)\(\sqrt{ }\)2.25*2.56=\(\frac{12}{5}\)                            =                             \(\sqrt{2.25}\)*\(\sqrt{2.56}\)=\(\frac{12}{5}\)

b)\(\sqrt{2.89\cdot6.25}\)=\(\frac{17}{4}\)                           =                             \(\sqrt{2.89\cdot\sqrt{ }6.25}=\frac{17}{4}\)

9 tháng 10 2016

đề bài là gì bạn ơi

 

22 tháng 11 2016

số nguyên tố nhỏ nhất : 2

số lớn nhất có 1 chữ số : 9

số nguyên số chia hết cho 5 ( có 1 chữ số ) : 5

số nhỏ nhất chia hết cho 5 ( có 1 chữ số ) : 5

abcd = 2955

22 tháng 11 2016

Số nguyên tố nhỏ nhất là 2 => a = 2

Số lớn nhất có 1 chữ số là 9 => b = 9

Số nguyên tố chia hết cho 5 là 5 => c = 5

Số nhỏ nhất chia hết cho 5 là 0 => d = 0

abcd = 2950. Năm đó là năm 2950

Mình thấy nó vô lí thế nào ấy

24 tháng 4 2019

\(f\left(x\right)\)có hai nghiệm là x=-1 và x=1

ta có: \(f\left(1\right)=0\Leftrightarrow1^3+a+b-2=0\Leftrightarrow a+b=1\)(1)

\(f\left(-1\right)=\left(-1\right)^3+a\left(-1\right)^2+b\left(-1\right)-2=0\Leftrightarrow a-b=3\)(2)

Từ (1) VÀ (2) TA CÓ: \(a=\frac{1+3}{2}=2;b=\frac{1-3}{2}=-1\)

b)Đề bài tìm số chính phương có bốn chữ số khác nhau ?

Đặt : \(\overline{abcd}=n^2;\overline{dcba}=m^2\)(g/s m, n là các số tự nhiên)

Theo bài ta có các giả thiết sau:  

\(1000\le m^2,n^2\le9999\Rightarrow32\le m;n\le99\)(1)

\(m^2⋮n^2\Rightarrow m⋮n\)(2)

=> Đặt m=kn (k là số tự nhiên, K>1)

Ta có: \(\hept{\begin{cases}32\le n\le99\\32\le m\le99\end{cases}\Rightarrow}\hept{\begin{cases}32.k\le kn\le99k\\32\le kn\le99\end{cases}\Rightarrow}32k\le kn\le99\Rightarrow k\le\frac{99}{32}\Rightarrow k\le3\)

Vậy nên k=2 hoặc bằng 3

Vì \(m=kn\Rightarrow m^2=k^2.n^2\Rightarrow\overline{dcba}=k^2.\overline{abcd}\)

+) Với k=2

Ta có: \(\overline{dcba}=4.\overline{abcd}\)

Vì  \(\overline{abcd};\overline{dcba}\)là các số chính phương có 4 chữ số khác nhau \(\Rightarrow d,a\in\left\{1;4;6;9;\right\}\)

và \(\overline{dcba}⋮\overline{abcd}\)nên d>a(2)

@) Khi \(a\ge4\Rightarrow\overline{dcba}\ge4.\overline{4bcd}>9999\)(loại)

Nên a=1.

Ta có: \(\overline{dcb1}=4.\overline{1bcd}\)vô lí vì không có số \(d\in\left\{1;4;6;9;\right\}\)nhân với 4 bằng 1

+) Với K=3

tương tự lập luận trên ta có a=1

Ta có: \(\overline{dcb1}=9.\overline{1bcd}\)=> d=9

Ta có: \(\overline{9cb1}=9.\overline{1bc9}\Leftrightarrow9000+c.100+b.10+1=9\left(1000+b.100+c.10+9\right)\)

\(\Leftrightarrow10c=890b+80\Leftrightarrow c=89b+8\)vì c, b là các số tự nhiên từ 0, đến 9

=> b=0; c=8

=> Số cần tìm 1089 và 9801 thỏa mãn với các điều kiện bài toán 

26 tháng 10 2016

\(\pi\approx3\approx3,1\approx3,1416\)

26 tháng 10 2016

a) Hàng đơn vị : 3,1

b) Hai chữ số thập phân : 3,14

c) Bốn chữ số thập phân : 3,1416

8 tháng 11 2016

Mình chỉ làm những câu rõ đề thôi nhé ^^

1/ a/ Đặt \(t=2x-3\) thì pt trở thành \(t^3=\left(t+2\right)^2\Leftrightarrow t^3-t^2-4t-4=0\Leftrightarrow t^2\left(t-1\right)-4\left(t-1\right)=0\)

\(\Leftrightarrow\left(t-1\right)\left(t^2-4\right)=0\Leftrightarrow\left(t-2\right)\left(t-1\right)\left(t+2\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}t=2\\t=1\\t=-2\end{array}\right.\)

Tới đây dễ rồi .

b/ Tương tự đặt \(a=2x-3\) thì pt trở thành \(a^3=a+2\Leftrightarrow a^3-a-2=0\)

Bạn xem lại đề , lớp 7 chưa học giải pt này đâu

c/ VT > 0 => VP > 0 => x > 0

Với x > 0 thì: \(\left|x+3\right|+\left|x+4\right|+\left|x+5\right|=x+3+x+4+x+5=3x+12\)

Tới đây dễ rồi :)

8 tháng 11 2016

4) |2-|3-2x||=4

<=>\(\left[\begin{array}{nghiempt}2-\left|3-2x\right|=4\\2-\left|3-2x\right|=-4\end{array}\right.\)

<=> \(\left[\begin{array}{nghiempt}\left|3-2x\right|=-2\left(vl\right)\\\left|3-2x\right|=6\end{array}\right.\)

<=> \(\left[\begin{array}{nghiempt}3-2x=6\\3-2x=-6\end{array}\right.\)

<=> \(\left[\begin{array}{nghiempt}x=-\frac{3}{2}\\x=\frac{9}{2}\end{array}\right.\)