K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2016

\(A=n^3-7n^2+4n-28=\left(n-7\right)\left(n^2+n+4\right)\)

Ta có \(n^2+n+4=\left(n+\frac{1}{2}\right)^2+\frac{15}{4}>0\). Vậy để A là số nguyên tố hoặc hợp số thì điều kiện là \(x>7\)

Xét : \(\left(n-7\right)\left(n^2+n+4\right)=\left(n-7\right)\left[n\left(n+1\right)+4\right]\)

\(=\left(n-7\right).n.\left(n+1\right)+4\left(n-7\right)\)

Ta có \(n\left(n+1\right)\) là tích của hai số tự nhiên liên tiếp nên chia hết cho 2  , \(4\left(n-7\right)\) cũng chia hết cho 2

=> A chia hết cho 2 => A là hợp số. (*)

Kết luận : A là hợp số với mọi số tự nhiên \(n>7\) và A không tồn tại giá trị là số nguyên tố.

Chú ý : (*) Trường hợp A = 2 (số nguyên tố chẵn duy nhất chia hết cho 2) ta không tìm được giá trị tự nhiên của n nên loại

26 tháng 10 2016

CVT làm dài dòng quá lớp 6 không đến nối vậy chứ có khi sai cũng lên để xem

mà đề bảo tìm n chứ có bắt chứng minh đâu

A=n^3-7n^2+4n-28

=n^2(n-7)+4(n-7)

n^2(n-7)+4(n-7) =(n-7)(n^2+4)

Vậy A luôn chia hết cho n-7 & (n^2+4)

*. tìm n để A là nguyên tố

đk cần (n-7) =1=> n=8  (duy nhất có thể nhưng chưa đủ)

với n=8 có A=64+4=68 ko phải nguyên tố

vậy không có n cho A là nguyên tố

  * tìm n đê A là hợp số 

A>0 vậy n>7 

với mọi n>7 A là hợp số 

24 tháng 11 2016

n\(^3\) -n\(^2\) -7n +10

=n\(^3\) -2n\(^2\) +n\(^2\) -2n-5n+10

=(n-2)(n\(^2\) +n-5) (bạn nhóm lại rồi rút nhân tử chung nha)

Vì P nguyên tố nên

=> n-2=1 =>n=3 (nhận)

=>n\(^2\) +n-5=1 => n=2 (nhận) hoặc n=-3(loại)

ta có: n=3 =>P=7(nhận) (bạn thế n vào biểu thức P rồi tính ra)

n=2 => P=0(loại)

vậy n cần tìm là n=3

25 tháng 11 2016

nếu n=1 thì k vẫn là số nguyên tố mà bạn

NV
20 tháng 3 2022

Đặt \(A=n^4-3n^3+4n^2-3n+3=\left(n^2+1\right)\left(n^2-3n+3\right)\)

Do \(n^2+1>1;\forall x\in Z^+\) nên N là số nguyên tố khi và chỉ khi:

\(\left\{{}\begin{matrix}n^2-3n+3=1\\n^2+1\text{ là số nguyên tố}\end{matrix}\right.\)

\(n^2-3n+3=1\Leftrightarrow n^2-3n+2=0\Rightarrow\left[{}\begin{matrix}n=1\\n=2\end{matrix}\right.\)

Với \(n=1\Rightarrow n^2+1=2\) là SNT (thỏa mãn)

Với \(n=2\Rightarrow n^2+1=5\) là SNT (thỏa mãn)

NV
12 tháng 1 2022

1.

\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)

Do x, y nguyên dương nên số đã cho là SNT khi:

\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)

\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)

Thay vào kiểm tra thấy thỏa mãn

2. \(N=n^4+4^n\)

- Với n chẵn hiển nhiên N là hợp số

- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)

\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)

\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)

Mặt khác:

\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)

\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)

\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1

\(\Rightarrow\) N là hợp số

NV
12 tháng 1 2022

Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).

Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9

Nó cũng không thể chỉ chứa các chữ số  3 và 9 (sẽ chia hết cho 3)

Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)

5 tháng 8 2015

-Xét N=2 thì N+2=2+2=4 chia hết cho 2 nên là hợp số(loại)

-Xét N=3 thì N+6=3+6=9 chia hết cho 3 nên là hợp số(loại)

-Xét N=5 thì N+2=5+2=7 là số nguyên tố

                  N+6=5+6=11 là số nguyên tố

                  N+8=5+8=13 là số nguyên tố

                  N+24=5+24=29 là số nguyên tố

   \(\Rightarrow\)N+5 thỏa mãn điều kiên đề bài

Các số nguyên tố N lớn hơn 5 có dạng: 5k+1;5k+2;5k+3 và 5k+4

Trường hợp 1:N=5k+1\(\Rightarrow\)N+24=5k+1+25 chia hết cho 5 nên là hợp số\(\Rightarrow\)N=5k+1 loại

Trường hợp 2:N=5k+2\(\Rightarrow\)N+8=5k+28=5k+10 chia hết cho 5 nên là hợp số\(\Rightarrow\)N=5k+2 loại

Trường hợp 3:N=5k+3\(\Rightarrow\)N+2=5k+3+2=5k+5 chia hết cho 5 nên là hợp số\(\Rightarrow\)N=5k+3 loại

Trường hợp 4:N=5k+4\(\Rightarrow\)N+6=5k+4+6=5k+10 chia hết cho 5 nên là hợp số\(\Rightarrow\)N=5k+4 loại

Vậy N=5 thỏa mãn yêu cầu của đề bài.

 

3 tháng 6 2019

Câu 1 bạn dùng chia hết cho 13

Câu 2 bạn cộng cả 2 vế với z^4 rồi dùng chia 8

Câu 3 bạn đặt a^4n là x thì x sẽ chia 5 dư 1 và chia hết cho 4 hoăc chia 4 dư 1

Khi đó ta có x^2+3x-4=(x-1)(x+4)

đến đây thì dễ rồi

Câu 4 bạn xét p=3 p chia 3 dư 1 p chia 3 dư 2 là ra

Câu 6 bạn phân tích biểu thức của đề thành nhân tử có nhân tử x-2

Câu 5 mình nghĩ là kẹp giữa nhưng chưa ra

3 tháng 6 2019

Cảm ơn bạn Ninh Đức Huy.