Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2n+1}{n-1}=\frac{2n-2+3}{n-1}=\frac{2n-2}{n-1}+\frac{3}{n-1}\)\(=\frac{2.\left(n-1\right)}{n-1}+\frac{3}{n-1}=2+\frac{3}{n-1}\)
\(\Rightarrow n-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n-1=1\Rightarrow n=2\)
\(n-1=-1\Rightarrow n=0\)
\(n-1=3\Rightarrow n=4\)
\(n-1=-3\Rightarrow n=-2\)
Vậy \(x\in\left\{\pm2;0;4\right\}\)
Nhớ tk cho mình nha
n - 2 là ước của 9n - 32
=> 9n - 32 chia hết cho n - 2
=> 9n - 18 - 14 chia hết cho n - 2
=> 9(n - 2) - 14 chia hết cho n - 2
Có 9(n - 2) chia hết cho n-2
=> -14 chia hết cho n - 2
=> n - 2 thuộc Ư(-14)
=> n - 2 thuộc {1; -1; 2; -2; 7; -7; 14; -14}
=> n thuộc {3; 1; 4; 0; 9; -5; 16; -12}
p/s : kham khảo
Ta có: \(2n-3⋮n+1\)
\(\Leftrightarrow-5⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{0;-2;4;-6\right\}\)
`2n-3 vdots n+1`
`=>2n+2-5 vdots n+1`
`=>2(n+1)-5 vdots n+1`
`=>5 vdots n+1` do `2(n+1) vdots n+1`
`=>n+1 in Ư(5)={+-1,+-5}`
`=>n in {0,-2,4,-6}`
Vậy `n in {0,-2,4,-6}` thì `2n-3 vdots n+1`
Để \(2n-3⋮n+1\)
<=> \(2n-3-2\left(n+1\right)⋮n+1\)
<=> \(-5⋮n+1\)
<=> \(n+1\inƯ\left(5\right)\)
<=> \(n+1\in\left\{-5;-1;1;5\right\}\)
<=> \(n\in\left\{-6;-2;0;4\right\}\)
2n - 3 chia hết cho n + 1
=> 2(n+1) - 5 chia hết cho n + 1
=> 5 chia hết cho n + 1
=> n + 1 thuộc Ư(5) = { -5 ; -1; 1 ; 5 }
Theo bài ra ta có
\(2x-3⋮n+1\)
\(\Rightarrow2\left(n+1\right)-5⋮n+1\)
\(\Rightarrow-5⋮n+1\)
\(\Rightarrow n+1\inƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\)
Ta lập bảng