Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
các phân số trên đưa về dạng : k/(n + k + 2) đặt là phân số (1)
với k= 7, 8, ..., 31
Muốn (1) tối giản <=> tử k và mẫu (n+k+2) không có ước chung > 1 khi k chạy từ 7, 8, ... , 31
Muốn vậy thì: n = 21
Ta có:
1/n + 3 = 1 / 1 + (n + 2)
2/n + 4 = 2 / 2 + (n + 2)
3/n + 5 = 3 / 3 + (n + 2)
....
2001/n + 2003 = 2001 / 2001 + (n + 2)
2002/n + 2004 = 2002 / 2002 + (n + 2)
Ta thấy các phân số trên đều có dạng a/a + (n + 2)
Để mỗi phân số đều tối giản thì a và n + 2 phải nguyên tố cùng nhau
=> n + 2 và 1; 2; 3; ...; 2001; 2002 nguyên tố cùng nhau
Mà n nhỏ nhất => n + 2 nhỏ nhất => n + 2 = 2003
=> n = 2003 - 2 = 2001
Vậy n = 2001
nhớ k nha
Ta có:
1/n + 3 = 1 / 1 + (n + 2)
2/n + 4 = 2 / 2 + (n + 2)
3/n + 5 = 3 / 3 + (n + 2)
....
2001/n + 2003 = 2001 / 2001 + (n + 2)
2002/n + 2004 = 2002 / 2002 + (n + 2)
Ta thấy các phân số trên đều có dạng a/a + (n + 2)
Để mỗi phân số đều tối giản thì a và n + 2 phải nguyên tố cùng nhau
=> n + 2 và 1; 2; 3; ...; 2001; 2002 nguyên tố cùng nhau
Mà n nhỏ nhất => n + 2 nhỏ nhất => n + 2 = 2003
=> n = 2003 - 2 = 2001
Vậy n = 2001
a) Để \(\dfrac{3n+4}{n-1}\) tối giản thì n không phải là giá trị sao cho \(\left(3n+4\right)⋮\left(n-1\right)\)
\(\left(3n+4\right)⋮\left(n-1\right)\Leftrightarrow\left(3n+4\right)-3\left(n-1\right)⋮\left(n-1\right)\)
\(\Leftrightarrow7⋮\left(n-1\right)\Rightarrow\left(n-1\right)\inƯ\left(7\right)\) (đoạn này tự lập bảng và kết luận)
b) Tương tự như câu a)