Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
10 chia hết cho n => n \(\in\)Ư(10) = {1;2;5;10}
2/ 12 chia hết cho n - 1 => n - 1 \(\in\)Ư(12) = {1;2;3;4;6;12}
=> n \(\in\){2;3;4;5;7;13}
3/ 20 chia hết cho 2n + 1 => 2n + 1 \(\in\)Ư(20) = {1;2;4;5;10;20}
=> 2n \(\in\){0;1;3;4;9;19}
=> n \(\in\){0;2} ( tại vì đề bài cho số tự nhiên nên chỉ có 2 số đây thỏa mãn)
4 / n \(\in\)B(4) = {0;4;8;12;16;20;24;...}
Mà n < 20 => n \(\in\){0;4;8;12;16}
5. n + 2 là ước của 30 => n + 2 \(\in\)Ư(30) = {1;2;3;5;6;10;15;30}
=> n \(\in\){0;1;3;4;8;13;28} (mình bỏ số âm nên mình không muốn ghi vào )
6. 2n + 3 là ước của 10 => 2n + 3 \(\in\)Ư(10) = {1;2;5;10}
=> 2n \(\in\){2;7} (tương tự mình cx bỏ số âm)
=> n = 1
7. n(n + 1) = 6 = 2.3 => n = 2
a, Ta có : \(\text{n + 5 = (n - 1)+6}\)
Vì \(\text{(n-1) ⋮ n-1}\)
Nên để \(\text{n+5 ⋮ n-1}\)⋮ `n-1`
Thì \(\text{6 ⋮ n-1}\)
\(\Rightarrow\) \(\text{n - 1 ∈ Ư(6)}\)
\(\Rightarrow\) \(\text{n - 1 ∈}\) \(\left\{\text{±1;±2;±3;±6}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{0;-1;-2;-5;2;3;4;7}\right\}\) \(\text{( TM )}\)
\(\text{________________________________________________________}\)
b, Ta có : \(\text{2n-4 = (2n+4)- 8 = 2(n+2) - 8}\)
Vì \(\text{2(n+2) ⋮ n+2}\)
Nên để \(\text{2n-4 ⋮ n+2}\)
Thì \(\text{8 ⋮ n+2}\)
\(\Rightarrow\) \(\text{n + 2 ∈ Ư(8)}\)
\(\Rightarrow\) \(\text{n + 2 ∈}\) \(\left\{\text{±1;±2;±4;±8}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-3;-4;-6;-10;-1;0;2;6}\right\}\) ( TM )
\(\text{_________________________________________________________________ }\)
c, Ta có :\(\text{ 6n + 4 = (6n + 3) +1 = 3(2n+1) + 1}\)
Vì \(\text{3(2n+1) ⋮ 2n+1}\)
Nên để\(\text{ 6n+4 ⋮ 2n+1}\)
Thì \(\text{1 ⋮ 2n+1}\)
\(\Rightarrow\) \(\text{2n + 1 ∈ Ư(1)}\)
\(\Rightarrow\) \(\text{2n + 1 ∈}\) \(\left\{\text{±1}\right\}\)
\(\Rightarrow\) \(\text{2n ∈}\) \(\left\{\text{-2;0}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-1;0}\right\}\) ( TM )
\(\text{_______________________________________}\)
Ta có : \(\text{3 - 2n = -( 2n - 3 ) = -( 2n + 2 ) + 5 = -2( n+1)+5}\)
Vì \(\text{-2(n+1) ⋮ n+1}\)
Nên để \(\text{3-2n ⋮ n+1}\)
Thì\(\text{ 5 ⋮ n + 1}\)
\(\Rightarrow\) \(\text{n + 1 ∈}\) \(\left\{\text{±1;±5}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\text{-2;-6;0;4}\) ( TM )
a) 6 là bội của n+1
=> 6 ⋮ n+1
=> n+1 thuộc Ư(6)={1;2;3;-1;-2;-3}
Lập bảng tìm n :
n+1 | 1 | 2 | 3 | -1 | -2 | -3 |
n | 0 | 1 | 2 | -2 | -3 | -4 |
Vậy n thuộc { 0;1;2;-2;-3;-4}
b) Xét n+1 là bội của 6
=> n+1 thuộc { 0; 6; 12; 18; ... }
=> n thuộc { -1; 5; 11; 17; .... }
Nhớ xét các t/h âm nữa nhé! Nhưng vì bội vô hạn nên chỉ cần thêm 1 - 2 số âm thôi nha ^^
c) 2n+3 là bội của n+1
=> 2n+3 ⋮ n+1
=> 2(n+1) + 1 ⋮ n+1
ta có 2(n+1) ⋮ n+1
=> 1 ⋮ n+1
=> n+1 thuộc Ư(1) = { 1; -1 }
=> n thuộc { 0; -2 }
d) tương tự
a) 6 là bội của n+1 => n+1 là ước của 6
Ư(6)= 1;2;3;6. Ta có bảng: ( bạn tự vẽ bảng nhé )
n+1 1 2 3 6
n 0 1 2 5
Vậy n = 0; 1; 2; 5
b) B(6)= 0;6;12;18;24;30;...... Ta có bảng:
n+1 0 12 18 24 30
n 0 11 17 23 29
Vậy n = 0;5;11;17;23;29;.....
c) ta có bảng:
n 0 1 2 3 4 5 6 7
2n+3 3 5 7 9 11 13 15 17
n+1 1 2 3 4 5 6 7 8
Vậy n = 0.
Bài 1:
a) Vì 10n luôn luôn có cs tận cùng là 0 (luôn luôn 10;100;1000;... đều trừ 1 thì đều chia hết cho 9)
suy ra 10n-1 chia hết cho 9
b) Vì 10n luôn luôn có cs tận cùng là 0
ta có 10n sẽ có tổng các cs của nó là 1
Vậy 10n+8 sẽ có tổng các cs là 9
Mà 9 chia hết cho 9 nên 10n+8 sẽ chia hết cho 9.
\(n^2+2n+6=n^2+4n-2n-8+14=n\left(n+4\right)-2\left(n+4\right)+14\)
\(=\left(n-2\right)\left(n+4\right)+14\)
Do \(\left(n-2\right)\left(n+4\right)⋮\left(n+4\right)\)
\(\Rightarrow14⋮n+4\)
\(\Rightarrow n+4\in\left(1;-1;2;-2;7;-7;14;-14\right)\)
\(\Rightarrow n\in\left(-3;-5;-2;-6;3;-11;10;-18\right)\)
n2 + 2n + 6 là bội của n + 4
=> n2 + 2n + 6 chia hết cho n + 4
Mà n + 4 chia hết cho n + 4
=> n ( n + 4 ) chia hết cho n + 4
=> n2 + 4n chia hết cho n + 4
=> ( n2 + 2n + 6 ) - ( n2 + 4n ) chia hết cho n + 4
=> n2 + 2n + 6 - n2 - 4n chia hết cho n + 4
=> 2n + 6 - 4n chia hết cho n + 4
=> -2n + 6 chia hết cho n + 4
Mà n + 4 chia hết cho n + 4
=> -2 ( n + 4 ) chia hết cho n + 4
=> -2n - 8 chia hết cho n + 4
=> ( -2n + 6 ) - ( -2n - 8 ) chia hết cho n + 4
=> - 2n + 6 + 2n + 8 chia hết cho n + 4
=> 2n - 2n + ( 6 + 8 ) chia hết cho n + 4
=> 0 + 14 chia hết cho n + 4
=> 14 chia hết cho n + 4
=> n + 4 thuộc Ư ( 14 )
=> n + 4 thuộc { 1 ; - 1 ; 2 ; - 2 ; 7 ; - 7 ; 14 ; - 14 }
=> n thuộc { - 3 ; - 5 ; - 2 ; - 6 ; 3 ; - 11 ; 10 ; - 18 }