Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> \(\frac{1}{a}=\frac{1}{3}+\frac{b}{6}=\frac{2+b}{6}\)
=> \(a=\frac{6}{2+b}\) Vì a là số tự nhiên khác không nên \(\frac{6}{2+b}\inℕ^∗\)
=> \(2+b\inƯ\left(6\right)\left\{1;2;3;6\right\}\)
=> \(b=\left\{0;1;4\right\}\) => \(a=\left\{3;2;1\right\}\)
Vậy ta đc cặp số \(\left(a;b\right)=\left\{\left(0;3\right);\left(1;2\right);\left(4;1\right)\right\}\)
Gọi \(\frac{13^{15}+1}{13^{16}+1}\)là S, \(\frac{13^{16}+1}{13^{17}+1}\)là X
\(13\cdot S=13\cdot\frac{13^{15+1}}{13^{16}+1}=\frac{13.\left(13^{15}+1\right)}{13^{16}+1}=\frac{13^{16}+13}{13^{16}+1}\)\(=\frac{13^{16}+1+12}{13^{16}+1}=\frac{13^{16}+1}{13^{16}+1}+\frac{12}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)
\(13\cdot X=13.\frac{13^{16}+1}{13^{17}+1}=\frac{13\cdot\left(13^{16}+1\right)}{13^{17}+1}=\frac{13^{17}+13}{13^{17}+1}\)\(=\frac{13^{17}+1+12}{13^{17}+1}=\frac{13^{17}+1}{13^{17}+1}+\frac{12}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)
Do \(1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)\(\rightarrow13\cdot S>13\cdot X\)\(\rightarrow S>X\)
Ta có B =(10/2n-2)+(n+3/2n-2)
B=13+n/2n-2
2B=26+2n/2n-2
2B=(2n-2/2n-2)+(28/2n-2)
2B=1+(28/2n-2)
Để B nhỏ nhất thì 2n-2<0 và là lớn nhất
<=>n<-1 và là lớn nhất
=>n=-1
=>B=-3
Mk viết hơi khó hiểu nên bn chịu khó dịch nhé!
\(A=\frac{5}{n-1}+\frac{n-3}{n-1}=\frac{5+n-3}{n-1}=\frac{n-2}{n-1}\)
a) Để A là phân số thì \(n-1\ne0\)
=> \(n\ne1\)
b) ĐK: n khác 1
Để A là 1 số nguyên thì \(n-2⋮n-1\)
\(\Leftrightarrow1⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(1\right)\)
...
a) Để A là phân số thì n-1 \(\ne\)0 => n \(\ne\)1
b) \(\frac{5}{n-1}\)+ \(\frac{n-3}{n-1}\)= \(\frac{5+n-3}{n-1}\)= \(\frac{n+2}{n-1}\)= \(\frac{n-1+3}{n-1}\)= \(\frac{3}{n-1}\)
Để A là số nguyên thì 3 \(⋮\)n-1
=> n-1 \(\in\)Ư(3) = { 1; 3; -1; -3}
=> n \(\in\){ 2; 4; 0; -2}
Vậy...
Ta có : a/3 - 1/2 = 1/b+5
=> 2a-3/6 = 1/b+5
=> (2a-3)(b+5)= 6
Sau đó bn xét bảng là ra
Giải:
A = (4n + 5) / (5n + 4)
Giả sử (4n + 5) và (5n + 4) đều chia hết số nguyên tố d
=> 5(4n + 5) - 4(5n + 4) chia hết cho d
Mà 5(4n + 5) - 4(5n + 4) = 9
=> 9 chia hết cho d
=> d có thể là số 3 ( vì d là số nguyên tố)
Nếu (5n + 4) chia hết cho 3 thì (4n + 5) cũng sẽ chia hết cho 3
nên ta chỉ cần xét (5n + 4) chia hết cho 3
♥ xét trường hợp (5n + 4) chia hết cho 3
Do (5n + 4) chia hết cho 3
=> [ (5n + 4) + 6 ] chia hết cho 3 ( vì 6 cũng chia hết cho 3)
=> [ 5(n + 2) ] chia hết cho 3
=> (n + 2) chia hết cho 3 ( do 5 không chia hết cho 3)
=> (n + 2) = 3k ( với k thuộc N )
=> n = 3k - 2 ( với k thuộc N )
Vậy : n = 3k - 2 ( với k thuộc N ) thì A có thể rút gọn được.
+++++++++++
Thử lại xem . Ví dụ : cho k = 2 => n = 4
=> A = (4.4 + 5) / (5.4 + 4) = 21/24
A có thể rút gọn : A = 7/8
♪_♫ Một phân số chỉ có thể rút gọn khi Ước số chung của mẫu số và tử số khác 1 và -1
ta co tu suy nghi