Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 2S=n(n+1)
Áp dụng tính chất: \(a^n+b^n⋮a+b\)với a, b là các số nguyên dương và n lẻ, ta có:
\(2T=\left(1^5+n^5\right)+\text{[}2^5+\left(n-1\right)^5\text{]}+...+\left(n^5+1^5\right)⋮\left(n+1\right)\)
Tương tự \(2T⋮n\)
Mà \(\left(n.n+1\right)=1\Rightarrow2T⋮n\left(n+1\right)hayT⋮S\)
Tổng quát:
Có thể chứng minh được:
\(A\left(k.n\right)=1^k+2^k+...+n^k⋮T\left(n\right)=1+2+3+...+n\forall n,k\in N;n\ge1\)và k lẻ
\(n^5+1⋮n^3+1\)
\(\Leftrightarrow n^5-n^3⋮n^3+1\)
\(\Leftrightarrow n^3\left(n^2-1\right)⋮n^3+1\)
Vì \(gcd\left(n^3,n^3+1\right)=1\) nên từ đây suy ra \(n^2-1⋮n^3+1\) (*)
Nếu \(n=1\) thì (*) thành \(0⋮2\) (thỏa mãn)
Nếu \(n\ge2\) thì (*) suy ra \(n^3+1\le n^2-1\)
\(\Leftrightarrow f\left(n\right)=n^3-n^2+2\le0\) (1)
Ta thấy \(f\left(n+1\right)-f\left(n\right)=\left(n+1\right)^3-\left(n+1\right)^2+2-n^3+n^2-2\)
\(=n^3+3n^2+3n+1-n^2-2n-1-n^3+n^2\)
\(=3n^2+n>0,\forall n\ge2\)
\(\Rightarrow f\left(n\right)\) là hàm số đồng biến trên \(ℕ_{\ge2}\) (cái này mình kí hiệu cho gọn thôi chứ bạn đừng viết vào bài làm nhé)
\(\Rightarrow f\left(n\right)\ge f\left(2\right)=6>0\)
Do đó (1) vô lý \(\Rightarrow n=1\) là giá trị duy nhất thỏa mãn ycbt.
\(\dfrac{n^5+1}{n^3+1}=\dfrac{\left(n+1\right)\left(n^4-n^3+n^2-n+1\right)}{\left(n+1\right)\left(n^2-n+1\right)}=\dfrac{n^4-n^3+n^2-n+1}{n^2-n+1}\)
\(=\dfrac{n^2\left(n^2-n+1\right)-\left(n-1\right)}{n^2-n+1}=n^2-\dfrac{n-1}{n^2-n+1}\)
Để \(n^5+1⋮n^3+1\Rightarrow\dfrac{n-1}{n^2-n+1}\in Z\)
- Với \(n=1\) thỏa mãn
- Với \(n>1\Rightarrow n^2-n>n^2-n=n\left(n-1\right)>n-1\)
\(\Rightarrow0< \dfrac{n-1}{n^2-n+1}< 1\) \(\Rightarrow\dfrac{n-1}{n^2-n+1}\notin Z\)
Vậy \(n=1\) là giá trị duy nhất thỏa mãn
Ta chứng minh BĐT sau : \(\frac{1}{\sqrt{n}}=\frac{2}{2\sqrt{n}}< \frac{2}{\sqrt{n-1}+\sqrt{n}}=2\left(\sqrt{n}-\sqrt{n-1}\right)\)
Áp dụng BĐT trên, ta có :
\(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}< 2\left(\sqrt{1}-\sqrt{0}+\sqrt{2}-\sqrt{1}+...+\sqrt{n}-\sqrt{n-1}\right)=2\sqrt{n}\)
\(\frac{1}{2\sqrt{n+1}}=\frac{1}{\sqrt{n+1}+\sqrt{n+1}}< \frac{1}{\sqrt{n+1}+\sqrt{n}}=\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)
Vậy ....
b1,
\(n^4< n^4+n^3+n^2+n+1\le n^4+4n^3+6n^2+4n+1=\left(n+1\right)^4\)
=>n4+n3+n2+n+1=(n+1)4<=>n=0
nhầm sai rồi nếu n^4+n^3+n^2+n+1 là scp thì mới chặn đc nhưng ở đây lại ko phải
\(\sqrt{\left(1+\frac{1}{n}-\frac{1}{n+1}\right)^2-2\left(\frac{1}{n}-\frac{1}{n\left(n+1\right)}-\frac{1}{n+1}\right)}\)
=1+1/n-1/n+1
chúc bn hoc tốt
\(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=1+\frac{1}{n}-\frac{1}{n+1}\)
\(\Rightarrow\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}=\frac{[\left(n+1\right)^2-n]^2}{n^2\left(n+1\right)^2}\)
\(\Rightarrow\left(n+1\right)^4+n^2=\left(n+1\right)^4-2\left(n+1\right)^2n+n^2\)
\(\Rightarrow0=-2\left(n+1\right)^2n\)
\(\Rightarrow\orbr{\begin{cases}\left(n+1\right)^2=0\\n=0\end{cases}}\Rightarrow\orbr{\begin{cases}n=-1\\n=0\end{cases}}\) mà \(n\inℕ^∗\)
=> n\(\in\varnothing\)