\(n\inℤ\)để :

a, \(n^2+2n-4⋮11\)

b, 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b1,

\(n^4< n^4+n^3+n^2+n+1\le n^4+4n^3+6n^2+4n+1=\left(n+1\right)^4\)

=>n4+n3+n2+n+1=(n+1)4<=>n=0

nhầm sai rồi nếu n^4+n^3+n^2+n+1 là scp thì mới chặn đc nhưng ở đây lại ko phải

19 tháng 1 2017

Giả sử có số \(n\) thoả đề. Khi đó do \(a\) chính phương nên \(4a\) cũng chính phương.

Và \(4a=4n^4+8n^3+8n^2+4n+28=\left(2n^2+2n+1\right)^2+27\)

Như vậy sẽ có 2 số chính phương lệch nhau \(27\) đơn vị là số \(4a\) và \(\left(2n^2+2n+1\right)^2\).

Ta sẽ tìm 2 số chính phương như thế.

-----

Ta sẽ giải pt nghiệm nguyên dương \(m^2-n^2=27=1.27=3.9\)

Ta có bảng: 

\(m+n\)\(27\)\(9\)
\(m-n\)\(1\)\(3\)
\(m^2\)\(196\)\(36\)
\(n^2\)\(169\)\(9\)

------

Theo bảng trên thì số \(\left(2n^2+2n+1\right)^2\) (số chính phương nhỏ hơn) sẽ nhận giá trị \(169\) và \(9\).

Đến đây bạn tự giải tiếp nha bạn.

Đáp số: \(2;-3\)

19 tháng 1 2017

chịu rồi 

tk nhé 

thanks 

2222

8 tháng 12 2023

Bài 1:

cho a2 + b2 ⋮ 3 cm: a ⋮ 3; b ⋮ 3

Giả sử a và b đồng thời đều không chia hết cho 3

      Vì a không chia hết cho 3 nên  ⇒ a2 : 3 dư 1

      vì b không chia hết cho b nên   ⇒ b2 : 3 dư 1

⇒ a2 + b2 chia 3 dư 2 (trái với đề bài)

Vậy a; b không thể đồng thời không chia hết cho ba

     Giả sử a ⋮ 3; b không chia hết cho 3 

      a ⋮ 3 ⇒  a 2 ⋮ 3 

   Mà  a2 + b2 ⋮ 3 ⇒ b2 ⋮ 3 ⇒ b ⋮ 3 (trái giả thiết) 

Tương tự b chia hết cho 3 mà a không chia hết cho 3 cũng không thể xảy ra 

Từ những lập luận trên ta có:

   a2 + b2 ⋮ 3 thì a; b đồng thời chia hết cho 3 (đpcm)

       

 

 

17 tháng 7 2019

\(P=\frac{2n^2-n+2}{2n+1}=\frac{n\left(2n+1\right)-\left(2n-2\right)}{2n+1}=n-\frac{2n-2}{2n+1}\)

\(=n-\frac{2n+1-3}{2n+1}=n-1+\frac{3}{2n+1}\)

Để P nguyên thì \(\frac{3}{2n+1}\)nguyên

\(\Leftrightarrow3⋮\left(2n+1\right)\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Lập bảng:

\(2n+1\)\(1\)\(-1\)\(3\)\(-3\)
\(n\)\(0\)\(-1\)\(1\)\(-2\)

Vậy \(n\in\left\{-2;-1;0;1\right\}\)

17 tháng 7 2019

#)Giải :

\(P=\frac{2n^2-n+2}{2n+1}=\frac{2n^2+n-2n-1+3}{2n+1}=\frac{n\left(2n+1\right)-\left(2n+1\right)+3}{2n+1}\)

\(=\frac{\left(2n+1\right)\left(n-1\right)+3}{2n+1}=n-1+\frac{3}{2n+1}\)

\(\Rightarrow2n+1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

\(\Rightarrow\orbr{\begin{cases}2n+1=-3\\2n+1=1\end{cases}\Rightarrow\orbr{\begin{cases}n=-2\\n=-1\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}2n+1=1\\2n+1=3\end{cases}\Rightarrow\orbr{\begin{cases}n=0\\n=1\end{cases}}}\)

Vậy \(n\in\left\{-2;-1;0;1\right\}\)