\(n\in Z\)để \(\left(3n-4\right)\)\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2017

2.(3n-4)=6n-8 chia hết (2n-1)

6n-8=3(2n-1)-5 chia hết (2n-1)

2n-1 chia hết cho (2n-1) hiển nhiên 

=> 5 phải chia hết cho (2n-1)

2n-1 = ước (5) =(-5,-1,1,5)

2n=(-4,0,2,6)

n={-2,0,1,3}

18 tháng 12 2018

\(2n+9⋮3n+1\)

\(\Rightarrow3\left(2n+9\right)⋮3n+1\)

\(\Rightarrow2\left(3n+1\right)+25⋮3n+1\)

\(\Rightarrow25⋮3n+1\)

\(\Rightarrow3n+1\in\left\{5,25,1,-5,-25,-1\right\}\)

\(n\in\left\{8,0\right\}\)

18 tháng 12 2018

\(5n+2⋮9-2n\)

\(\Rightarrow2\left(5n+2\right)⋮9-2n\)

\(\Rightarrow-5\left(9-2n\right)-41⋮9-2n\)

\(41⋮9-2n\)

\(\Rightarrow9-2n\in\left\{41,-41,1,-1\right\}\)

\(\Rightarrow n\in\left\{-16,25,4,-5\right\}\)

16 tháng 7 2016

a) \(n^2-3n+9\)chia het cho \(n-2\)

\(\Leftrightarrow\)\(n^2-2n-n-2+11\)chia het cho \(n-2\)

\(\Leftrightarrow\)\(\left(n-2\right)\left(n+1\right)+11\)chia het cho \(n-2\)

\(\Leftrightarrow\)11 chia het cho \(n-2\)

\(\Rightarrow\)\(n-2\in U\left(11\right)\)\(\Rightarrow\)\(n-2\in\left\{-11;-1;1;11\right\}\)

                                                   \(\Rightarrow\)\(n\in\left\{-9;1;3;13\right\}\)

16 tháng 7 2016

b) 2n-1 chia hết cho n-2

\(\Rightarrow2n-2+3\) chia hết cho\(n-2\)

\(\Rightarrow3\)chia hết cho \(n-2\)

\(\Rightarrow n-2\in U\left(3\right)\)\(\Rightarrow n-2\in\left\{-3;-1;1;3\right\}\)\(\Rightarrow n\in\left\{-1;1;3;5\right\}\)

a) Vì 3\(⋮\)n

=> n\(\in\)Ư(3)={ 1; 3 }

Vậy, n=1 hoặc n=3

17 tháng 10 2018

A:    n=3;1                  E:     n=2

B:     n=6;2                  F:    n=2

c:     n=1                     G:     n=2

D:    n=2                      H:     n=5

5 tháng 1 2019

\(------huongdan-----\)

\(Taco:\)

\(\left(3n-2n\right)⋮n+1\Leftrightarrow n⋮n+1\Leftrightarrow\left(n+1\right)-n⋮n+1\Leftrightarrow1⋮n+1\)

\(\Leftrightarrow n+1\in\left\{-1;1\right\}\Leftrightarrow n\in\left\{-2;0\right\}\)

\(b,2n-4⋮n+2\Leftrightarrow2n+4-2n+4⋮2n+4\Leftrightarrow8⋮2n+4\)

dễ thấy: 2n+4 chẵn => 2n+4 là ước chẵn của 8

\(\Rightarrow2n+4\in\left\{2;4;8;-2;-4;-8\right\}\Rightarrow2n\in\left\{-2;0;4;-6;-8;-12\right\}\)

\(\Rightarrow n\in\left\{-1;0;2;-3;-4;-6\right\}\)

5 tháng 1 2019

\(2n-4⋮n+2\)

\(\Rightarrow2n+4-8⋮n+2\)

\(\Rightarrow2\left(n+2\right)+8⋮n+2\)

\(\Rightarrow n+2\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

bn tụ lập bảng ha ~ 

27 tháng 7 2017

b)

Để \(2n⋮\left(n-1\right)\)

\(\Rightarrow2.\left(n-1\right)+2⋮\left(n-1\right)\)

\(\Rightarrow2⋮\left(n-1\right)\)

\(\Rightarrow\left(n-1\right)\inƯ\left(2\right)=\left\{1;2\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}n-1=1\Rightarrow n=2\\n-1=2\Rightarrow n=3\end{matrix}\right.\)

Vậy n=2;n=3 thì \(2n⋮\left(n-1\right)\)

27 tháng 7 2017

c)

Để \(\left(3n-8\right)⋮\left(n-4\right)\)

\(\Rightarrow3.\left(n-4\right)+4⋮\left(n-4\right)\)

\(\Rightarrow4⋮\left(n-4\right)\)

\(\Rightarrow\left(n-4\right)\inƯ\left(4\right)=\left\{1;2;4\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}n-4=1\Rightarrow n=5\\n-4=2\Rightarrow n=6\\n-4=4\Rightarrow n=8\end{matrix}\right.\)

Vậy với .....................