Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2n2 + 5n - 1 | 2n - 1
2n2 - 2n | 2n + 7
-----------------
7n - 1
7n - 7
------------------
6
Để 2n2 + 5n - 1 chia hết cho 2n - 1 thì 6 phải chia hết cho 2n - 1
Hay 2n-1 thuộc Ư(6) = { 1; 2; 3; 6; -1; -2; -3; -6 }
Ta có bảng :
2n-1 | 1 | 2 | 3 | 6 | -1 | -2 | -3 | -6 |
n | 1 | 1,5 | 2 | 3,5 | 0 | -0,5 | -1 | -2,5 |
Vậy n thuộc { 1; 1,5; 2; 3,5; 0; -0,5; -1; -2,5 }
Ta có:
\(2n^2+5n-1⋮2n-1\)
\(\Rightarrow n\left(2n-1\right)+3\left(2n-1\right)+2⋮2n-1\)
\(\Rightarrow2⋮2n-1\)
Do \(n\in Z\Rightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\Rightarrow2n\in\left\{0;2;-1;3\right\}\)
Mà \(n\in Z\Rightarrow n\in\left\{0;1\right\}\)
2n2 - n + 6n - 3 +4 = n( 2n-1) + 3(2n -1) + 4 chia hết cho 2n -1
khi 4 chia hết cho 2n-1
=> 2n -1 thuộc U(4) = { -4;-1;1;4}
Vì 2n -1 là số lẻ
=> 2n -1 =-1 => n =0
=> 2n -1 = 1 => n =1
Vậy n thuộc { 0 ; 1}
2n2 + 3n + 3 | 2n-1
- 2n2 - n | n + 2
0 + 4n +3
- + 4n -2
+ 5
Để phép chia tren là phép chia hết thì :
\(5⋮2n-1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
+ ) 2n - 1 = 1
2n = 2
n = 1
+ ) 2n - 1 = -1
2n = 0
n = 0
+ ) 2n - 1 = 5
2n = 6
n = 3
+ ) 2n - 1 = -5
2n = -4
n = -2
Vậy x \(\in\) { -2;3 ;1 ; 0 }
ta có : \(\frac{4n^3-4n^2-n+4}{2n+1}=\frac{\left(2n+1\right)\left(2n^2-3n+1\right)+3}{2n+1}\)\(=2n^2-3n+1+\frac{3}{2n+1}\)
để \(4n^3-4n^2-n+4⋮2n+1\) thì \(2n+1\) là ước của \(3\) nên \(2n+1=\)\(\left(1;-1;3;-3\right)\)cái này phải là dấu ngoặc nhọn nha mình k ghi đc nên cậu tự sửa nhá
TH1: với \(2n+1=1\Leftrightarrow2n=0\Leftrightarrow n=0\)
TH2: với \(2n+1=-1\Leftrightarrow2n=-2\Leftrightarrow n=-1\)
TH3: với \(2n+1=3\Leftrightarrow2n=2\Leftrightarrow n=1\)
TH4: với \(2n+1=-3\Leftrightarrow2n=-4\Leftrightarrow n=-2\)
Sử dụng phép chia đa thức \(2n^2+5n-1\)cho n-1. Ta có được
\(2n^2+5n-1=\left(n-1\right)\left(2n+7\right)+6\)
Để \(2n^2+5n-1\)chia hết cho n-1 thì 6 phải chia hết cho n-1 => n-1 là ước của 6 ,
\(n-1\in U\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)và n-1 khác 0.
Bạn tự làm tiếp nhé!
Để 2n2 + 5n - 1 chia hết cho n - 1
=> 2n2 - 2n + 7n - 7 + 6 chia hết cho n - 1
2n.(n-1) + 7.(n-1) + 6 chia hết cho n - 1
(n-1).(2n+7) + 6 chia hết cho n - 1
mà (n-1).(2n+1) chia hết cho n - 1
=> 6 chia hết cho n - 1
=> n - 1 thuộc Ư(6)={1;-1;2;-2;3;-3;6;-6}
nếu n - 1 = 1 => n = 2 (TM)
...
bn tự xét tiếp nha!
Ta có:
\(\dfrac{2n^2-n+2}{2n+1}=\dfrac{2n^2+n-2n-1+3}{2n+1}=\\ \dfrac{n\left(2n+1\right)-\left(2n+1\right)+3}{2n+1}=\dfrac{\left(2n+1\right)\left(n-1\right)+3}{2n+1}\\ =n-1+\dfrac{3}{2n+1}\)
Để 2n2−n+2 chia hết cho 2n + 1 (với n ∈ Z) thì 2n + 1 phải là ước của 3. Do đó:
2n + 1 = 1=> 2n = 0 => n=0.
2n + 1 = −1 => 2n = −2 => n = −1.
2n+1 = 3 =>2n = 2 => n = 1.
2n + 1 = −3 => 2n = −4 => n = − 2.
Vậy n = 0; -1; -2; 1.
A=2n\(^2\)+5n-1
=2n\(^2\)-2n+7n-7+6
=2n(n-1)+7(n-1)+6
=(n-1)(2n+7)+6
Để A\(⋮\)n-1 mà (n-1)(2n+7)\(⋮\)n-1
\(\Rightarrow\)6\(⋮\)n-1
vì n\(\in\)Z nên n-1\(\in\)Ư(6)=\([\)1;-1;6;-6\(]\)
\(\Rightarrow\)n\(\in\)\([\)2;0;7;-5\(]\) (T/m)
KL