Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các phân số trên có dạng \(\frac{a}{n+2+a}\) với a = 6; 7; 8; ...; 65
\(\frac{a}{n+2+a}\)tối giản \(\Leftrightarrow\)ƯCLN(a; n+2+a) = 1 \(\Leftrightarrow\) ƯCLN(n+2; a) = 1
\(\Leftrightarrow\)n + 2 nguyên tố cùng nhau với mỗi số 6; 7; 8; ...; 65 và n + 2 nhỏ nhất
Do đó n + 2 = 67 (67 là số nguyên tố)
nên n = 65
Bài 2:
a)Gọi UCLN(14n+3;21n+4) là d
Ta có:
[3(14n+3)]-[2(21n+4)] chia hết d
=>[42n+9]-[42n+8] chia hết d
=>1 chia hết d
=>d=1. Suy ra 14n+3 và 21n+4 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
b)Gọi UCLN(12n+1;30n+2) là d
Ta có:
[5(12n+1)]-[2(30n+2)] chia hết d
=>[60n+5]-[60n+4] chia hết d
=>1 chia hết d. Suy ra 12n+1 và 30n+2 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
c)Gọi UCLN(3n-2;4n-3) là d
Ta có:
[4(3n-2)]-[3(4n-3)] chia hết d
=>[12n-8]-[12n-9] chia hết d
=>1 chia hết d. Suy ra 3n-2 và 4n-3 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
d)Gọi UCLN(4n+1;6n+1) là d
Ta có:
[3(4n+1)]-[2(6n+1)] chia hết d
=>[12n+3]-[12n+2] chia hết d
=>1 chia hết d. Suy ra 4n+1 và 6n+1 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
bài a) n=18;9;10;13
cậu giải chi tiết hộ mình