Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{n+5}{n}=\frac{n}{n}+\frac{5}{n}=1+\frac{5}{n}\)
Để \(\frac{n+5}{n}\) có GTN thì \(1+\frac{5}{n}\) phải có GTN
\(\Rightarrow\frac{5}{n}\) phải có GTN
\(\Rightarrow5\) phải chia hết cho n
\(\Rightarrow n\inƯ\left(5\right)\)
\(\Rightarrow n\in\left\{\pm1;\pm5\right\}\)
Mà n là STN nên \(n\in\left\{1;5\right\}\)
Vậy có tất cả 2 STN n để \(\frac{n+5}{n}\) có GTN
Ta có : \(\frac{n+5}{n}=\frac{n}{n}+\frac{5}{n}=1+\frac{5}{n}\)
Để \(1+\frac{5}{n}\in N\Leftrightarrow\frac{5}{n}N\in\)N
=> n thuộc ước của 5 là 1 ; 5
Vậy n = 1 ; 5
c) +) giả sử k chẵn--> k2 chẵn --> k2-k+1 lẻ
+) giả sử k lẻ --> k2 lẻ --> k2-k+1 lẻ
==> ko tồn tại k thuộc Z thỏa đề
d) sai
vì ví dụ x=-4<3 nhưng x2=(-4)2=16>9(ko thỏa đề)
Đk để pt trên có 2 nghiệm phân biệt x1,x2 : a>0 và denta>0
suy ra denta= (2m+1)^2-4.(m^2+1)>0
suy ra : m>3/4
Ta có P=x1x2/x1+x2=(m^2+1)/(2m+1)
Ta có: P∈Z
⇒4P∈Z
⇒(4m^2+4)/2m+1=(2m-1)+5/2m+1∈Z
⇒2m+1=Ư(5)={−5;−1;1;5}
⇒m={−3;−1;0;2}
Kết hợp đk m>3/4 ta được m=2
Bài 1:a=b*\(\frac{m}{n}\)
Bài 2:b=a:\(\frac{3}{2}\)
Bài 3:cho hỏi tỉ số % hở
Phải là tìm giá trị của n < 10 để a là phân số tối giản bạn ạ
Ta tìm số tự nhiên n để \(\frac{n+9}{n+3}\) rút gọn được
Gọi d là ước chung nguyên tố của n + 9 và n + 3
=> n + 9 chia hết cho d
n + 3 chia hết cho d
=> (n + 7) - (n + 2) chia hết cho d
=> 9 chia hết cho d
Mà d nguyên tố => d = 3
=> tìm n để n + 9 và n + 3 chia hết cho 2
Do n + 9 = (n + 3) + 6 nên nếu n + 3 chia hết cho 2 và 3 thì n + 9 sẽ chia hết cho 2 và 3
Vì n + 9 chia hết cho 2 nên n + 9 chẵn
=> n lẻ (1)
Vì n + 9 chia hết cho 3 nên n chia hết cho 3
\(\Rightarrow n=3k\left(k\in N\right)\) (2)
Từ (1) và (2) \(\Rightarrow n\in\left\{0;1;3;5;6;7;9\right\}\)thì phân số \(\frac{n+9}{n+3}\) rút gọn được
\(\Rightarrow n\in\left\{2;4;8\right\}\) thì phân số \(\frac{n+9}{n+3}\) tối giản
Vậy với \(n\in\left\{2;4;8\right\}\) thì phân số \(a=\frac{n+9}{n+3}\) tối giảnGọi d là ƯC ( n + 9 ; n + 3 )
=> n + 9 ⋮ d
=> n + 3 ⋮ d
=> ( n + 9 ) - ( n + 3 ) ⋮ d
=> 3 ⋮ d => d = 1 ; 3
Ta có : n + 9 ⋮ 3 => n + 9 = 3k ( k thuộc N )
=> n = 3k - 9
n + 3 ⋮ 3 => n + 3 = 3k => n = 3q - 3 ( q thuộc N )
=> n = 3 ( q - 1 )
Vậy với n ≠ 3k - 9 và 3 ( q -1 ) thì phân số trên tối giản
\(P=\frac{1}{4a+2b+3}+\frac{1}{4b+\frac{2}{c}+3}+\frac{1}{2a+\frac{4}{c}+3}\)
Đặt \(\left(2a;2b;\frac{2}{c}\right)=\left(x^2;y^2;z^2\right)\Rightarrow x^2y^2z^2=\frac{8ab}{c}=1\Rightarrow xyz=1\)
\(P=\frac{1}{2x^2+y^2+3}+\frac{1}{2y^2+z^2+3}+\frac{1}{2z^2+x^2+3}\)
\(P=\frac{1}{x^2+y^2+x^2+1+2}+\frac{1}{y^2+z^2+y^2+1+2}+\frac{1}{z^2+x^2+z^2+1+2}\)
\(P\le\frac{1}{2xy+2x+2}+\frac{1}{2yz+2y+2}+\frac{1}{2zx+2x+2}=\frac{1}{2}\)
\(\Rightarrow P_{max}=\frac{1}{2}\Rightarrow S=4\)
để\(\frac{19}{n-1}\)là số nguyên suy ra 19 chia hết cho n-1 suy ra n-1 thuộc ước của 19
suy ra n-1=\(\left\{1;19\right\}\)suy ra n=\(\left\{2;20\right\}\)
vậy n=\(\left\{2;20\right\}\)
sai rồi