\(n\in z\)

để đa thức \(2n^2+n-18⋮n-3\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2022

Theo Bezout  đa thức  F(n) = 2n2 + n - 18 chia hết cho đa thức n - 3 

⇔  F(3) ⋮ n- 3 ⇔ 2.32 + 3 - 18  ⋮ n - 3 ⇔ 3 ⋮ n - 3

n - 3 ⋮ Ư(3) = {  -3; -1; 1; 3} ⇔ n ϵ { 0; 2; 4; 6}

13 tháng 12 2022

bạn có chép sai đề bài không ạ?

31 tháng 12 2018

\(2n^2-7n+4⋮2n+1\)

\(2n^2+n-8n-4+8⋮2n+1\)

\(n\left(2n+1\right)-4\left(2n+1\right)+8⋮2n+1\)

\(\left(2n+1\right)\left(n-4\right)+8⋮2n+1\)

Vì \(\left(2n+1\right)\left(n-4\right)⋮2n+1\)

\(\Rightarrow8⋮2n+1\)

\(\Rightarrow2n+1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

Mà n thuộc Z và 2n + 1 là số lẻ nên \(2n+1\in\left\{\pm1\right\}\)

\(\Rightarrow n\in\left\{0;-1\right\}\)

Vậy..........

19 tháng 12 2016

Bài 1:

\(x^5+x+1\)

\(=x^5-x^4+x^2+x^4-x^3+x+x^3-x^2+1\)

\(=x^2\left(x^3-x^2+1\right)+x\left(x^3-x^2+1\right)+\left(x^3-x^2+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)

Bài 2:

\(\frac{2n^2-3n+1}{2n+1}=\frac{n\left(2n+1\right)-4n+1}{2n+1}=\frac{n\left(2n+1\right)}{2n+1}-\frac{4n+1}{2n+1}=n-\frac{4n+1}{2n+1}\in Z\)

\(\Rightarrow4n+1⋮2n+1\)

\(\Rightarrow\frac{4n+1}{2n+1}=\frac{2\left(2n+1\right)-1}{2n+1}=\frac{2\left(2n+1\right)}{2n+1}-\frac{1}{2n+1}=2-\frac{1}{2n+1}\in Z\)

\(\Rightarrow1⋮2n+1\)

\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow2n\in\left\{0;-2\right\}\)

\(\Rightarrow n\in\left\{0;-1\right\}\)

 

22 tháng 8 2017

Ta có: x2 – x – 12 = x2 – x – 16 + 4

= (x2 – 16) – (x – 4)

= (x – 4).(x + 4) – (x – 4)

= (x – 4).(x + 4 – 1)

= (x – 4).(x + 3)

5 tháng 1 2018

Ta có: x2 – x – 12 = x2 – x – 16 + 4

= (x2 – 16) – (x – 4)

= (x – 4).(x + 4) – (x – 4)

= (x – 4).(x + 4 – 1)

= (x – 4).(x + 3)

14 tháng 11 2018

ta có : \(\frac{4n^3-4n^2-n+4}{2n+1}=\frac{\left(2n+1\right)\left(2n^2-3n+1\right)+3}{2n+1}\)\(=2n^2-3n+1+\frac{3}{2n+1}\)

để \(4n^3-4n^2-n+4⋮2n+1\) thì \(2n+1\) là ước của \(3\) nên \(2n+1=\)\(\left(1;-1;3;-3\right)\)cái này phải là dấu ngoặc nhọn nha mình k ghi đc nên cậu tự sửa nhá

TH1: với \(2n+1=1\Leftrightarrow2n=0\Leftrightarrow n=0\)

TH2: với \(2n+1=-1\Leftrightarrow2n=-2\Leftrightarrow n=-1\)

TH3: với \(2n+1=3\Leftrightarrow2n=2\Leftrightarrow n=1\)

TH4: với \(2n+1=-3\Leftrightarrow2n=-4\Leftrightarrow n=-2\)

20 tháng 8 2017

a) Có \(\dfrac{x^4-x^3+6x^2-x+n}{x^2-x+5}\) được thương là x2 +1 và dư n-5
Vậy để đa thức trên chia hết thì n-5 = 0 => n = 5

b) Có \(\dfrac{3x^3+10x^2-5+n}{3x+1}\) được thương là x2 + 3x -1 và dư -4 +n
Vậy để đa thức trên chia hết thì -4 + n = 0 => n = 4

c) Theo đề bài ta có:
\(\dfrac{2n^2+n-7}{n-2}=2n+5+\dfrac{3}{n-2}\)
Với n nguyên để đa thức trên chia hết thì ( n - 2) phải thuộc ước của 3
Từ đó, ta có:

n-2 n
-1 1
1 3
-3 -1
3 5

Vậy khi n đạt những giá trị trên thì đa thức trên sẽ chia hết

24 tháng 8 2017

thank you!!

13 tháng 11 2016

2n2 + 3n + 3 | 2n-1

- 2n2 - n | n + 2

0 + 4n +3

- + 4n -2

+ 5

Để phép chia tren là phép chia hết thì :

\(5⋮2n-1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

+ ) 2n - 1 = 1

2n = 2

n = 1

+ ) 2n - 1 = -1

2n = 0

n = 0

+ ) 2n - 1 = 5

2n = 6

n = 3

+ ) 2n - 1 = -5

2n = -4

n = -2

Vậy x \(\in\) { -2;3 ;1 ; 0 }

 

 

29 tháng 3 2017

a,    n+5 chia hết cho n-2

     =>   n-2+2+5 chia hết cho n-2

     =>   7 chia hết cho n-2

     => n-2 E Ư(7)={1;-1;7;-7}

     => n E{3;1;9;-5}

29 tháng 3 2017

b, 2n+1 chia hết cho n-5

   => 2n-10+10+1 chia hết cho n-5

   => 2.(n-5)+10+1 chia hết cho n-5

   => 11 chia hết cho n-5

   => n-5 E Ư(11)={1;-1;11;-11}

   => n E {6;4;16;-6}

21 tháng 10 2017

n=0,-1,1