\(n\in Nsao\)

để \(\left(\sqrt{5}+3\right)^n+\left(3-\sqrt...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2017

\(\left(3+\sqrt{5}\right)^n+\left(3-\sqrt{5}\right)^n=A+B\sqrt{5}+A-B\sqrt{5}=2A\in Z\)

14 tháng 9 2017
Đặt a=3+sqrt(5);b=3-sqrt(5). Đắt S(n)=a^n+b^n. Bây giờ Bạn chứng minh S(n+2)=(a+b)S(n+1)-ab.S(n)=6S(n+1)-S(n)(1). Xét S(1) là stn, từ 1 =>S(2) cũng là stn, S(3),... S(n)=>đccm
14 tháng 9 2017

cho x;y;z>0 tm \(x^2+y^2+z^2=3xyz.CMR\frac{x^2}{x^4+yz}+\frac{y^2}{Y^4+xz}+\frac{z^2}{z^4+xy}\le\frac{3}{2}\)

NV
27 tháng 9 2019

Ta có \(y=\frac{x}{4^5}=\left(\frac{3+\sqrt{5}}{2}\right)^{10}+\left(\frac{3-\sqrt{5}}{2}\right)^{10}\)

Đặt \(a=\frac{3+\sqrt{5}}{2}\); \(a=\frac{3-\sqrt{5}}{2}\Rightarrow\left\{{}\begin{matrix}ab=1\\a+b=3\end{matrix}\right.\)

Xét \(S_n=a^n+b^n\) (\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\) \(\Rightarrow S_n>0\) )

\(\Rightarrow S_0=2;\) \(S_1=3\);

Ta có \(S_1.S_n=\left(a+b\right)\left(a^n+b^n\right)=a^{n+1}+b^{n+1}+a.b^n+b.a^n\)

\(S_1S_n=a^{n+1}+b^{n+1}+a^{n-1}+b^{n-1}\) (do \(a=\frac{1}{b}\)\(b=\frac{1}{a}\))

\(S_1S_n=S_{n+1}+S_{n-1}\)

\(\Rightarrow S_{n+1}=2S_n-S_{n-1}\)

Do \(S_0\)\(S_1\) nguyên \(\Rightarrow S_n\) nguyên với mọi \(n\ge1\)

\(\Rightarrow S_n\) nguyên dương với mọi \(n\ge1\)

\(\Rightarrow y=S_{10}\in N\Rightarrow x=4^5.y=1024.y⋮1024\)

27 tháng 9 2019

chỗ đặt b nhầm thành a kìa

4 tháng 8 2020

Bài 1 :

\(6xy\cdot\sqrt{\frac{9x^2}{16y^2}}=6xy\cdot\frac{3x}{4y}=\frac{18x^2y}{4y}=\frac{9}{2}x^2\)

\(\sqrt{\frac{4+20a+25a^2}{b^4}}=\sqrt{\frac{\left(2+5a\right)^2}{\left(b^2\right)^2}}=\frac{2+5a}{b^2}\)

\(\left(m-n\right).\sqrt{\frac{m-n}{\left(m-n\right)^2}}=\sqrt{\left(m-n\right)^2}\cdot\sqrt{\frac{1}{m-n}}=\sqrt{\frac{\left(m-n\right)^2}{m-n}}=\sqrt{m-n}\)

Bài 2 : 

1. \(\left(2\sqrt{3}-\sqrt{12}\right):5\sqrt{3}=\left(2\sqrt{3}-2\sqrt{3}\right):5\sqrt{3}=0:5\sqrt{3}=0\)

2. \(\sqrt{\frac{317^2-302^2}{1013^2-1012^2}}=\frac{\sqrt{\left(317+302\right)\left(317-302\right)}}{\sqrt{\left(1013+1012\right)\left(1013-1012\right)}}=\frac{\sqrt{619}\cdot\sqrt{15}}{\sqrt{2025}}=\sqrt{\frac{619}{135}}\)(check lại)

3. \(\sqrt{27\left(1-\sqrt{3}\right)^2}:3\sqrt{75}\)

\(=\sqrt{27}\left(1-\sqrt{3}\right):15\sqrt{3}\)

\(=3\sqrt{3}\left(1-\sqrt{3}\right):15\sqrt{3}\)

\(=\frac{1-\sqrt{3}}{5}\)

4.\(\left(5\sqrt{\frac{1}{5}}+\frac{1}{2}\sqrt{20}-\frac{5}{4}\sqrt{\frac{4}{5}}+\sqrt{5}\right):2\sqrt{5}\)

\(=\left(\frac{5}{\sqrt{5}}+\frac{\sqrt{20}}{2}-\frac{\frac{5}{4}\cdot2}{\sqrt{5}}+\sqrt{5}\right):2\sqrt{5}\)

\(=\left(\sqrt{5}+\frac{2\sqrt{5}}{2}-\frac{\frac{5}{2}}{\sqrt{5}}+\sqrt{5}\right):2\sqrt{5}\)

\(=\left(\sqrt{5}+\sqrt{5}+\frac{\sqrt{5}}{2}+\sqrt{5}\right):2\sqrt{5}\)

\(=\frac{7}{2}\sqrt{5}:2\sqrt{5}\)

\(=\frac{7}{4}\)

18 tháng 2 2018

Câu trả lời ở đây: https://dethihsg.com/de-thi-hoc-sinh-gioi-toan-9-phong-gddt-cam-thuy-2011-2012/amp/

1 tháng 9 2019

Ở câu a ko có chữ " b " nhé